Retrieval Strategies 87

To compute Q(gold \/ silver V truck), we look at the documents which contain
each of those terms. Gold is in Dy and D3 with a strength of membership of
0.143. Silver is only in Do with a strength of membership of 0.25. Similarly,
truck is in Dy with a membership of 0.125 and D3 with 0.143. Applying the-
maximum set membership to implement the fuzzy OR, we obtain:

Q(gold \ silver \ truck) = {(D, 0.143), (D2, 0.25), (D3, 0.143)}

The documents would then be ranked, D,, D, D3 based on strength of mem-
bership for each document. As another example, consider the query: (truck A\
(gold \/ silver)). For this query, we determine D(truck) and D(gold \/ silver)—
we will refer to these two sets as set A and set B.

A = D(truck) = {(Da, 0.125), (D3, 0.143)}

For D{(gold \/ silver) we proceed as before, taking the maximum value of each
degree of membership for each document in which either term appears. From
our previous computation, we determine:

B = D(gold \/ silver) = {(D1, 0.143), (D4, 0.25), (D3, 0.143)}

Taking the fuzzy intersection of set A with set B we use the minimum strength
of membership. This yields:

A N\ B = D(truck A (gold \ silver)) = {(D2,0.125), (Ds, 0.143)}

At this point, we have not incorporated any query weights. We now modify
the example to multiply each strength of membership by the idf for each query
term. We use the following query term weights:

3
gold = log 5= 0.176
. 3
silver = log 1= 0.477

3
truck = log 3= 0.176

We now compute D(gold \/ silver \/ truck). D includes only gold with a
strength of 0.143. Gold has a query term weight of 0.176, so Dy has a weighted
strength of membership of (0.143)(0.176) = 0.025. Silver and truck are found
in Dy. Silver has a strength of membership of 0.25 and a weight of 0477,
so the weighted strength of (0.25)(0.477) = 0.119. Similarly, for truck, the
weighted strength is (0.125)(0.176) = 0.022. Since we are taki 'g the union, we
take the maximum value so Do will have a strength of membership of 0.119.

88 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTI cs

For Dj, both gold and truck are present with a strength of 0.143 and both
terms are weighted by 0.176. Hence, the weighted strength is (0.143)(0.176)
= 0.025. The fuzzy set D(gold \/ silver V truck) = {(Dy, 0.025), (D>, 0.1 19),
(D3, 0.025)} For the query, D(truck A\ (gold \/ silver)) we must again deter-
mine D(gold \/ silver) and D(truck). Using the weighted strength of member-
ship yields:

A =D(truck) = {(D5, 0.022), (D3, 0.025)}
B =D(gold V silver) = { Dy, 0.025), (D5, 0.1 19), (D3, 0.025)}

Again, taking the minimum strength of membership to compute the intersec-
tion, we obtain:

A B =D(truck A (gold \/ silver)) = {(Ds, 0.022), (D4, 0.025)}

2.9.2 Using a Concept Hierarchy

An approach using fuzzy logical inference with a concept hierarchy was
used in the FIRST system (Fuzzy Information Retrieval SysTem) [Lucarella
and Morara, 1991].

A concept network is used to represent concepts found in documents and
queries and to represent the relationships between these concepts. A concept
network is a graph with each vertex representing a concept and a directed edge
between two vertices representing the strength of the association of the two
concepts. A document can then be represented as a fuzzy set of concepts:

di = {(Cr,w1), (Ca,wa), ..., (Cs,ws3)}

This indicates that document one contains the concepts (C1, Cy, C3) and the
strength of each concept is given by (w;, wo, ws). The link relationships are
defined as fuzzy transitive so that if C; is linked to Cj, and Cj is linked to Cy,
and the strength of C; to Cy, is defined as:

F(Ci,Cy) = Min(F(Cy, Cy), F(C;, Cy))

To compute the strength between two concepts, take the minimum value of
all edges along the path, then add query Q at the root of the concept hierarchy.
For each concept linked to the query, it is ‘possible to obtain the strength of
that concept for a given document. To do so, find all paths through the concept
graph from the concept to the document and take the minimum of all edges
that connect the source concept to the document. Each of these paths results in
a single value. An aggregation rule is then applied to compute the strength of
the source concept as the maximum of the value returned by each distinct path.
A detailed example is given in [Lucarella and Morara, 1991]. Note for queries

Retrieval Strategies 89

involving more than one initial concept, the appropriate fuzzy operations are
applied to each pair of arguments in a Boolean operator.

A comparison of the vector space model to this approach was done. A 300
document Italian test collection was used with a handbuilt concept graph that
contained 175 concepts. Ten queries were chosen, and FIRST had comparable
precision to vector space and had higher recall.

293 Allowing Intervals and Improving Efficiency

In [Chen and Wang, 1995], Lucarella’s model was extended through the
use of intervals rather than real values as concept weights. Additionally, an
efficiency improvement was added in that a concept matrix was developed.

The concept matrixisaC x C matrix that is represented such that M(C;, C5)
indicates the strength of the relationships between C; and C;. The strength is
defined as a single value or an interval such that the strength occurs some-
where inside of the interval. The transitive closure T of M is computed via
successive matrix multiplications of M. Once the T matrix is computed, an en-
try T(C;, Cj) indicates the strength of the relationship of Cj to C;, where the
strength is computed as the maximum of all paths from C; to Cj.

Although the initial computation of T is expensive for a concept network
with a high number of concepts, T efficiently computes a similarity coefficient.
First, a new matrix of size¢ D x C maps all of the documents to concepts.
An entry, t;;, in this matrix indicates the strength of the relationship between
document i and concept j. Values for t;; are obtained either directly, if the
concept appears in the given document, or indirectly, if the concept does not
appear in the given document—in this case the T matrix is used to obtain the
weight for that concept.

Given a document, D;, with concepts (c;1, i2, - - - , Cin) and a query Q with
concepts (21,2, . . -, n), a similarity coefficient is computed for all concepts
that exist in the query (a concept that does not exist in the query has the value
of “-”):

S5C(Q,D;) = Z T (tij,)

aU)# =" Ai=1

where T(x,y) =1 - |z — ¥

The function T measures the difference between the strength of the concept
found in the document and the user input strength of the concept found in the
query. The document strength is computed as the minimum of the strengths
found on the path from the document to the concept. A small difference results
in a high value of T, and the similarity coefficient simply sums these differences
for each concept given in the query.

90 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

For intervals, a new function, S, computes the average of the distance be-
tween the high and low ends of the interval. For example, an interval of {3,
5] compared with an interval of [2, 6] results in a distance of W‘—s—' = 1.
These differences are then summed for a similarity coefficient based on inter-
vals.

210 Summary

We described nine different strategies used to rank documents in response to
a query. The probabilistic model, vector space model, and inference networks
all use statistical measures that essentially rely upon matching terms between
a query and a document.

The vector space model represents documents and queries as vectors. Sim-
ilarity among documents, and between documents and queries is defined in
terms of the distance between two vectors. For example, one of the common
similarity measures is the cosine similarity, which treats the difference between
two documents or a document and a query as the cosine of the angle between
these two vectors.

The probabilistic model uses basic probability theory with some key as-
sumptions to estimate the probability of relevance. It is often criticized as
requiring pre-existing relevance information to perform well. We described
various means of circumventing this problem—including Kwok’s novel idea
of using self-relevance to obtain an initial estimate.

A relatively new strategy, language modeling is an approach that has previ-
ously worked well in speech recognition. Numerous papers have been written
on this strategy in the last few years and it has now clearly taken its place
among the most popular strategies discussed today.

Using evidence, inference networks use Bayesian inference to infer the prob-
ability that a document is relevant. Since inference networks are capable of
modeling both vector space and probabilistic models, they may be seen as a
more powerful model. In fact, different inference network topologies have yet
to be fully explored.

Latent semantic indexing is the only strategy we presented that directly ad-
- dresses the problem that relevant documents to a query, at times, contain nu-
merous terms that are identical in meaning to the query but do not share the
same syntax. By estimating the “latent semantic” characteristics of a term-term
matrix, LST is able to accurately score a document as relevant to the query even
though the term-mismatch problem is present.

Neural networks and genetic algorithms are both used commonly for ma-
chine learning applications and have only initially been used in document
ranking. Computational resource limitations have prevented their widespread
use—but the potential for these strategies to retrieve documents that differ from
other strategies makes them intriguing.

Retrieval Strategies 91

The fuzzy set and extended Boolean. are older strategies that extend the
widespread use of Boolean requests into relevance ranks. Other strategies
require users to submit a list of terms—instead of a Boolean request—and a
ranking is then obtained. In some applications, users prefer Boolean requests.
This is particularly true for those users who have relied on Boolean requests
for years.

So, which strategy is best? This is still an area for debate, and therefore, for
further investigation. To our knowledge, no head-to-head comparison of all of
these strategies has been implemented. TREC (Text REtrieval Conference) ac-
tivities evaluate complete information retrieval systems, but a system includes
a strategy and a set of utilities, as well as, a variety of other implementation
details. Thus far, no decisive conclusion can be deduced about the contribu-
tion of one strategy given a fixed framework of all other system components.
Additional thoughts and comments related to these strategies are described in
[Salton, 1989, Kowalski and Maybury, 2000}, and some of the original papers
describing these efforts were reprinted in [Sparck Jones and Willett, 1997).

2.11 Exercises

1 Show how inference networks can be used to model either the vector space
model or the probabilistic model.

2 Download Alice in Wonderland from the internet. Write some code to iden-
tify the idf of each term. Identify how closely this work matches the Zipfian
distribution.

3 Devise a new strategy that allows users to implement a Boolean retrieval
request. The results should be ranked in order of the similarity to the query.
Compare your new strategy with the extended Boolean retrieval strategy.

4 Describe the effect of adding new or changing existing documents to the
vector space strategy. Which values must be recomputed? ‘How can the
strategy be slightly modified so that it is more resilient to the addition of
new documents?

5 Develop a detailed example (as done with our standard query: gold, sil-
ver. truck) and our standard document collection to compute the similarity
between the query and each document using Term Components.

6 Develop a detailed example (as done with our standard query: gold, sil-
ver. truck) and our standard document collection to compute the similarity
between the query and each document using language models with Jelinek-
Mercer smoothing.

7 It has been suggested that one or more strategies could be merged to form an
improved result set. Give two general heuristics to merge results from two

92 INFORMATION RETRIE VAL:ALGORITHMS AND HEURISTICS

arbitrary retrieval strategies. Describe the advantages and disadvantages
inherent in your approach,

Chapter 3

RETRIEVAL UTILITIES

Many different utilities improve the results of a retrieval strategy. Most
utilities add or remove terms from the initial query in an attempt to refine the
query. Others simply refine the focus of the query by using subdocuments
or passages instead of whole documents. The key is that each of these utilities
(although rarely presented as such) are plug-and-play utilities that operate with
any arbitrary retrieval strategy.

The utilities identified are:

= Relevance Feedback—The top documents found by an initial query are
identified as relevant. These documents are then examined. They may be
deemed relevant either by manual intervention or by an assumption that
the top n documents are relevant. Various techniques are used to rank the
terms. The top ¢ terms from these documents are then added back to the
original query.

= Clustering—Documents or terms are clustered into groups either automat-
ically or manually. The query is only matched against clusters that are
deemed to contain relevant information. This limits the search space. The
goal is to avoid non-relevant documents before the search even begins.

n Passage-based Retrieval—The premise is that most relevant documents
have a non-relevant portion, and the relevant passage is somewhat concen-
trated. Hence, queries are matched to passages (either overlapping or non-
overlapping) of documents, and the results for each passage are then com-
bined into a single similarity coefficient. The size of each passage is either
fixed or varied based on the passage finding algorithm. Other approaches
simply rank each sentence, paragraph, or other naturally occurring subdivi-
sion of a document.

94 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

s Parsing (noun phrase processing, stemming, etc.): Simply matching terms
does not always yield good results. The identification and use of phrases
~ is computationally much easier than the use of proximity operators. Pars-
ing rules or lists of known phrases are used to identify valid phrases like
“New York.” These phrases are then treated as single terms. Other parsing
techniques avoid common prefixes or suffixes to allow for matches between
query and document terms that share a common root but have different pre-
fixes or suffixes.

s N-grams—The query is partitioned into n-grams (overlapping or
non-overlapping sequences of n characters). These are used to match queries
with the document. The goal is to obtain a “fuzzier” match that would be re-
silient to misspellings or optical character recognition (OCR) errors. Also,
n-grams are language independent.

» Thesauri—Thesauri are automatically generated from text or by manual
methods. The key is not only to generate the thesaurus, but to use it to
expand either queries or documents to improve retrieval.

= Semantic Networks—Concept hierarchies exist in which individual con-
cepts are linked to other related concepts. The strength of the relationship
is associated with the link. One such network is Wordnet [Beckwith and
Miller, 1990], but others exist. Attempts to automatically construct such
a network were pursued. The challenge is to use the network to expand
queries or documents to contain more terms describing the contents of the

query.

= Regression Analysis— Statistical techniques are used to identify parame-
ters that describe characteristics of a match to a relevant document. These
can then be used with a regression analysis to identify the exact parameters
that refine the similarity measure.

3.1 Relevance F eedbgck

A popular information retrieval utility is relevance feedback. The basic
premise is to implement retrieval in multiple passes. The user refines the query
in each pass based on results of previous queries. Typically, the user indicates
which of the documents presented in response to an initial query are relevant,
and new terms are added to the query based on this selection. Additionally,
existing terms in the query can be re-weighted based on user feedback. This
process is illustrated in Figure 3.1.

An alternative is to avoid asking the user anything at all and to simply as-
sume the top ranked documents are relevant. Using either manual (where the
user is asked) or automatic (where it is assumed the top documents are rele-
vant) feedback, the initial query is modified, and the new query is re-executed.

Retrieval Utilities 95

Figure 3.1. Relevance Feedback Process

Rele_/_ance Fe_gdback

Original query _ _’l .“
Q. Qz,) G R

Resuit Set

Query
Enrichment
Retrieval

Enriched query
| C|1, QZI ey Qj

For example, an initial query “find information surrounding the various con-
spiracy theories about the assassination of John F. Kennedy” has both useful
keywords and noise. The most useful keywords are probably assassination and
John F. Kennedy. Like many queries (in terms of retrieval) there is some mean-
ingless information. Terms such as various and information are probably not
stop words (i.e., frequently used words that are typically ignored by an infor-
mation retrieval system such as a, an, and, the), but they are more than likely
not going to help retrieve relevant documents. The idea is to use all terms in
the initial query and ask the user if the top ranked documents are relevant. The
hope is that the terms in the top ranked documents that are said to be relevant
will be “good” terms to use in a subsequent query.

Assume a highly ranked document contains the term Oswald. It is reason-
able to expect that adding the term Oswald to the initial query would improve
both precision and recall. Similarly, if a top ranked document that is deemed
relevant by the user contains many occurrences of the term assassination, the
weight used in the initial query for this term should be increased.

96 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

With the vector space model, the addition of new terms to the original query,
the deletion of terms from the query, and the modification of existing term
weights has been done. With the probabilistic model, relevance feedback ini-
tially was only able to re-weight existing terms, and there was no accepted
means of adding terms to the original query. The exact means by which rel-
evance feedback is implemented is fairly dependent on the retrieval strategy
being employed. However, the basic concept of relevance feedback (i.e., run a
query, gather information from the user, enhance the query, and repeat) can be
employed with any arbitrary retrieval strategy.

Section 3.1.1 discusses the initial use of the vector space model to imple-
ment relevance feedback. Section 3.1.2 discusses the probabilistic means by
which relevance feedback is added.

Relevance feedback has been fertile ground for research, as many tuning
parameters are immediately apparent. Most feedback algorithms start with the
premise that within the top x ranked documents, the top t terms will be used.
Finding correct values for x and ¢, as well as examining the number of itera-
tions required to obtain good results, has been the subject of a fair amount of
research. Recently, a summer workshop was held which focused on identifying
good values for z and ¢ [Harman and Buckley, 2004].

3.1.1 Relevance Feedback in the Vector Space Model

Rocchio, in his initial paper, started the discussion of relevance feedback
[Rocchio, 1971]. Interestingly, his basic approach has remained fundamentally
unchanged.

Rocchio’s approach used the vector space model to rank documents. The
query is represented by a vector (), each document is represented by a vector
D;, and a measure of relevance between the query and the document vector is
computed as SC(Q, D;), where SC is the similarity coefficient. As discussed
in Section 2.1, the SC is computed as an inner product of the document and
query vector or the cosine of the angle between the two vectors. The basic
assumption is that the user has issued a query () and retrieved a set of docu-
ments. The user is then asked whether or not the documents are relevant. After
the user responds, the set R contains the n; relevant document vectors, and the
set S contains the ny non-relevant documenrt vectors. Rocchio builds the new
query Q' from the old query @ using the equation given below:

, 1 ni 1 n2
Q=Q+ - ;Rz - };18
R; and §; are individual components of R and S, respectively.

The document vectors from the relevant documents are added to the initial
query vector, and the vectors from the non-relevant documents are subtracted.
If all documents are relevant, the third term does not appear. To ensure that

Retrieval Utilities 97

the new information does not completely override the original query, all vector
modifications are normalized by the number of relevant and non-relevant doc-
uments. The process can be repeated such that ;1 is derived from Q); for as
many iterations as desired.

The idea is that the relevant documents have terms matching those in the
original query. The weights corresponding to these terms are increased by
adding the relevant document vector. Terms in the query that are in the non-
relevant documents have their weights decreased. Also, terms that are not in
the original query (had an initial component value of zero) are now added to
the original query.

In addition to using values n; and nag, it is possible to use arbitrary weights.
The equation now becomes:

;L ny &— n2§i
Q—aQ+ﬁ§m vi};ln?

Not all of the relevant or non-relevant documents must be used. Adding
thresholds n, and np to indicate the thresholds for relevant and non-relevant
vectors results in:

min(ng,ny) R4 min(ny,n2) S,

! b =zt

Q=a0Q+8 Z oY Z ™

i=1 i=1

The weights o, 3, and ~ are referred to as Rocchio weights and are frequently

mentioned in the annual proceedings of TREC. The optimal values were exper-

imentally obtained, but it is considered common today to drop the use of non-

relevant documents (assign zero to) and only use the relevant documents.

This basic theme was used by Ide in follow-up research to Rocchio where the
following equation was defined:

ny
Q=aQ+8) Ri-S
i=1
Only the top ranked non-relevant document is used, instead of the sum of all
non-relevant documents. Ide refers to this as the Dec-Hi (decrease using high-
est ranking non-relevant document) approach. Also, a more simplistic weight
is described in which the normalization, based on the number of document
vectors is removed, and «a, 83, and ~ are set to one [Salton, 1971a]. This new
equation is:
ni na
Q=Q+> Ri-}_S
i=1 i=1
An interesting case occurs when the original query retrieves only non-relevant
documents. Kelly addresses this case in [Salton, 1971b]. The approachssug-
gests that an arbitrary weight should be added to the most frequently occurring

98 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

concept in the document collection. This can be generalized to increase the
component with the highest weight. The hope is that the term was important,
but it was drowned out by all of the surrounding noise. By increasing the
weight, the term now rings true and yields some relevant documents. Note that
this approach is applied only in manual relevance feedback approaches. It is
not applicable to automatic feedback as the top n documents are assumed, by
definition, to be relevant.

3.1.2 Relevance Feedback in the Probabilistic Model

We described the basic probabilistic model in Section 2.2. Essentially, the
terms in the document are treated as evidence that a document is relevant to
a query. Given the assumption of term independence, the probability that a
document is relevant is computed as a product of the probabilities of each term
in the document matching a term in the query.

The probabilistic model is well suited for relevance feedback because it is
necessary to know how many relevant documents exist for a query to compute
the term weights. Typically, the native probabilistic model requires some train-
ing data for which relevance information is known. Once the term weights are
computed, they are applied to another collection.

Relevance feedback does not require training data. Viewed as simply a util-
ity instead of a retrieval strategy, probabilistic relevance feedback “plugs in”
to any existing retrieval strategy. The initial query is executed using an arbi-
trary retrieval strategy and then the relevance information obtained during the
feedback stage is incorporated.

For example, the basic weight used in the probabilistic retrieval strategy is:

_Ti
R—r;
w; = log —
N-n;)—(R—-7;
where:

w; = weightof term 7 in a particular query
R = number of documents that are relevant to the query
N = number of documents in the collection
r; = number of relevant documents that contain term ¢
n; = number of documents that contain term

R and r cannot be known at the time of the initial query unless training data
with relevance information is available. Realistically, the presence of domain-
independent training data is unlikely. Some other retrieval strategy such as

Retrieval Utilities 99

the vector space model could be used for the initial pass, and the top n docu-
ments could be observed. At this point, R can be estimated as the total relevant
documents found in the top n documents, and 7 is the number of occurrences
in these documents. The problem of requiring training data before the prob-
abilistic retrieval strategy can be used is eradicated with the use of relevance
feedback.

3.1.2.1 Initial Estimates

The initial estimates for the use of relevance feedback using the probabilistic
model have varied widely. Some approaches simply sum the idf as an initial
first estimate. Wu and Salton proposed an interesting extension which requires
the use of training data. For a given term ¢, it is necessary to know how many
documents are relevant to term ¢ for other queries. The following equation
estimates the value of r; prior to doing a retrieval:

ri =a+blogf

where f is the frequency of the term across the entire document collection.

This equation results in a curve that maps frequency to an estimated number
of relevant documents. Frequency is an indicator of the number of relevant
documents that will occur because of a given term. After obtaining a few
sample points, values for a and b can be obtained by a least squares curve
fitting process. Once this is done, the value for 7; can be estimated given a
value of f, and using the value of r;, an estimate for an initial weight (IW)
is obtained. The initial weights are then combined to compute a similarity
coefficient. In the paper [Wu and Salton, 1981} it was concluded (using very
small collections) that idf was far less computationally expensive, and that the
IW resulted in slightly worse precision and recall. However, we are unaware
of work done with IW on the TREC collection.

3.1.2.2 Computing New Query Weights

Some variations on the basic weighting strategy for use with relevance feed-
back were proposed in [Robertson and Sparck Jones, 1976]. The potential
for using relevance feedback with the probabilistic model was first explored
in [Wu and Salton, 1981]. Essentially, Wu and Salton applied Sparck.Jones’
equation for relevance information [Robertson and Sparck Jones, 1976]. They
modified the approach by using the similarity coefficient found in the equation
below. Given a vector (Q representing the query and a vector D; representing
the documents with a collection of ¢ terms, the following equation computes
the similarity coefficient. The components of d; are assumed to be binary. A
one indicates the term is present, and a zero indicates the term is absent, and K

100 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

is a constant.

u,)
SC d;log + K
Z (1 - pz)
Using this equation requires estimates for.p; and u;. The simplest estimate
uses p; = %ao—ls and u; = ﬂ;v'—r%. That is, the ratio of the number of

relevant documents retrieved that contain term i to the number of relevant doc-
uments is a good estimate of the evidence that a term i results in relevance.
The 0.5 is simply an adjustment factor. Similarly, .the ratio of the number of
documents that contain term ¢ that were not retrieved to the number of docu-
ments that are not relevant is an estimate of u;. Substituting these probabilities
into the equation yields one of the conventional weights [Robertson and Sparck
Jones, 1976], w, we described in Section 2.2.1.1:

r;+0.5
R+1

=71, 0.5
N-R¥1

Using relevance feedback, a query is initially submitted and some relevant
documents might be found in the initial answer set. The top documents are
now examined by the user and values for 7; and R can be more accurately
estimated (the values for n; and N are known prior to any retrieval). Once this
is done, new weights are computed and the query is executed again. Wu and
Salton tested four variations of composing the new query:

1. Generate the new query using weights computed after the first retrieval.

2. Generate the new query, but combine the old weights with the new. Wu
suggested that the weights could be combined as:

y_1-8

Q ot
where @ contains the old weights and T contains the weights computed by
using the initial first pass. 3 is a scaling factor that indicates the importance of
the initial weights. The ratio of relevant documents retrieved to relevant docu-
ments available collection-wide is used for this value (3 = 7). A query that
retrieves many relevant documents should use the new weights more heavily
than a query that retrieves only a few relevant documents.

(1-8)(T)

3. Expand the query by combining all the terms in the original query with all
the terms found in the relevant documents. The weights for the new query are
used as in step one for all of the old terms(those that existed in the original
query and in the relevant documents). For terms that occurred in the original
query, but not in any documents retrieved in the initial phase, their weights
are not changed. This is a fundamental difference from the work done by

Retrieval Utilities 101

Sparck Jones because it allows for expansion as well as reweighting. Before
this proposal, work in probabilistic retrieval relied uponthe reweighting-of old
terms, but it did not allow for the addition of new terms.

4. Expand the query using a combination of the initial weight and the new
weight. This is similar to variation number two above. Assuming q; to gy, are
the weights found in the m components of the original query, and m — n new
terms.are found after the initial pass, we have the following:

1-p
Q,: Q (Q1»Q2a-~-an,OaO’---»0)+ﬁ(QIaQQa---mean+1a---aqm+n)

Additionally, a modified estimate for p; and u; was computed. These new
values are given below:

i+ §

Di = —FH—+

R+1
n; —r;+ %}‘
N-R+1
Here the key element of the idf is used as the adjustment factor instead of the
crude 0.5 assumption.

Wu and Salton found the fourth variation, which combines results of reweight-
ing and term expansion, to be the most effective. Relatively little difference
was observed with the modified p; and w;.

Salton and Buckley give an excellent overview of relevance feedback. Twelve
variations on relevance feedback were attempted [Salton and Buckley, 1990].
These included: stemmed Rocchio, Ide, conventional Sparck Jones probabilis-
tic equation (see Section 2.2.1), and the extended probabilistic given in Wu
and Salton [Wu and Salton, 1981]. All twelve were tested against six small
collections (CACM, CISI, CRAN, INSPEC, MED, and NPL). All of these
collections were commonly used by many researchers prior to the develop-
ment of the larger TIPSTER collection. Different parameters for the variations
were tried, such that there were seventy-two different feedback methods in all.
Overall' Ide Dec-Hi (decrease using the highest ranking elements) performed
the best—having a ranking of one in three of the six collections and a ranking
of two and six in the others.

U; =

3.1.2.3 Partial Query Expansion

The initial work done by Wu and Salton in 1981 either used the original
query and reweighted it or added all of the terms in the initial result set to the
query and computed the weights for them [Wu and Salton, 1981]. The idea of
using only a selection of the terms found in the top documents was presented
in [Harman, 1988]. In this paper, the top ten documents were retrieved. Some
of these documents were manually identified as relevant. The question then

102 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

arises as to which terms from these documents should be used to expand the
initial query. Harman sorted the terms based on six different sort orders and,
once the terms were sorted, chose the top twenty terms. The sort order had a
large impact on effectiveness. Six different sort orders were tested on the small
Cranfield collection.

In many of the sort orders a noise measure, n, is used. This measure, for the
ktP term is computed as:

tf;
ng = Z Ni‘i logy fit fik

i S
where:
tfic = number of occurrences of term 7 in document k
fr. = number of occurrences of term k in the collection
N = number of terms in the collection

This noise value increases for terms that occur infrequently in many docu-
ments, but frequently across the collection. A small value for noise occurs
if a term occurs frequently in the collection. It is similar to the idf, but the
frequency within individual documents is incorporated.

Additional variables used for sort orders are:

pr = number of documents in the relevant set that contain term k
rtfr = number of occurrences of term k in the relevant set

A modified noise measure, rny, is defined as the noise within the relevant set.
This is computed as:

t .
TR =Y i i logy frtfik
=

Various combinations of rny, n, and p;, were used to sort the top terms. The
six sort orders tested were:

Nk

Pk

TN

g X 1t fi
ng X fr X pi
nk X fi

Retrieval Utilities 103

The sort order: ny, X fi X pg, resulted in the highest improvement in aver-
age precision (9.4%). This is very similar to p; X idf which is a reasonable
measure given that py is an intuitively good value to use (i.e., a term that ap-
pears frequently in the relevant set is probably a good term to add to the query).
However, this will not be the case for noise terms that occur frequently across
the collection. This explains why the p;, value did not perform as well as when
it was combined with ny.

Six additional sort orders were tested in a follow-up paper [Harman, 1992].
The sorts tested were:

(—RTJ%(@ where RTj is the total number of documents retrieved for query
4, df; is the document frequency or number of documents in the collection
that contain term i, and N is the number of documents in the collection.
This gives additional weight to terms that appear in multiple documents of
the initial answer set.

n %1 — ‘% where 7;; is the number of retrieved relevant documents for query
j that have term i. R; is the number of retrieved relevant documents for
query j. This gives additional weight to terms that occur in many rele-
vant documents and which occur infrequently across the entire document
collection.

= Wi; = log, %1%;%% where W;; is the term »\./eight il’or term i in' query j.
This is based on Sparck Jones probabilistic weights given in Section 2.2.1.
The probability that term ¢ is assigned within the set of relevant documents
to query j is p;;. The probability that term i is assigned within the set of
non-relevant documents for query j is g;j. These are computed as:

"_Tij+0.5 ”_dfi—"'i+0-5
Pi=g 10 T N_-R;+10

®» idf;(pij —gij) where the theoretical foundation is based on the presumption
that the term 4’s importance is computed as the amount that it will increase
the difference between the average score of a relevant document and the
average score of a nonrelevant document. The means of identifying a term
weight are not specified in this work, so for this sort order, idf; is used.
Additional details are given in [Robertson, 1990].

= W,;(pij — gij) where the term weight is computed as given above.

s log(RTF; + 1)(pij — qi;) where RTF; is the number of occurrences of
term 7 in the retrieved relevant documents.

Essentially, sort three was found to be superior to sorts four, five, and six, but
there was little difference in the use of the various sort techniques. Sorts one
and two were not as effective.

104 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Once the sort order was identified, the number of terms to add to the new
query was studied. A peak at twenty terms was identified. At TREC, similar
differences were observed in which some groups engaged in “massive query
expansion” in which all terms in the first phase are added to the query, while
other groups use only a subset of those terms [Buckley et al., 1994, Salton
and Buckley, 1990]. Some groups at TREC have used fifty terms and twenty
phrases and obtained good results.

In [Lundquist et al., 1997] additional sort techniques were explored using
the TIPSTER collection, and it was found that p; x nidf performs well. The
variable, nidf, is a normalized idf using pivoted document length normaliza-
tion (see Section 2.1.2). Additionally, it was shown that the use of the top ten
items (either terms or phrases) resulted in a thirty-one percent improvement in
average precision over the use of the top fifty terms and twenty phrases.

3.1.2.4 Number of Feedback Iterations

The number of iterations
needed for successful relevance feedback was initially tested in 1971 by Salton
[Salton, 1971d]. His 1990 work with 72 variations on relevance feedback as-
sumed that only one iteration of relevance feedback was used. Harman investi-
gated the effect of using multiple iterations of relevance feedback in [Harman,
1992].

In her work, the top ten documents were initially retrieved. A count of the
number of relevant documents was obtained, and a new set of ten documents
was then retrieved. The process continued for six iterations. Searching termi-
nates if no relevant documents are found in a given iteration. Three variations
of updating term weights across iterations were used based on whether or not
the counting of relevant documents found was static or cumulative. Each itera-
tion used the basic strategy of retrieving the top ten documents, identifying the
top 20 terms, and reweighting the terms.

The three variations tested were:

= Cumulative count—counts relevant documents and term frequencies within
relevant documents. It accumulates across iterations

= Reset count—resets the number of relevant documents and term frequen-
cies within relevant documents are reset after each iteration

= Reset count, single iteration term—counts are reset and the query is reset
such that it only contains terms from the current iteration

In each case, the number of new relevant documents found increased with each
iteration. However, most relevant documents were found in the first two itera-
tions. On average, iterations 3, 4, 5, and 6 routinely found less than one new

Retrieval Utilities 105

relevant document per query. All three variations of implementing relevance
feedback across iterations performed comparably.

3.1.2.5 User Interaction

As earlier stated, the initial work in relevance feedback assumed the user
would be asked to determine which documents were relevant to the query. Sub-
sequent work assumes the top n documents are relevant and simply uses these
documents An interesting user study, done by Spink, looked at the question
of using the top documents to suggest terms for query expansion, but giving
the user the ability to pick and choose which terms to add [Spink, 1994, Spink,
1995]. Users were also studied to determine how much relevance feedback is
used to add terms as compared to other sources. The alternative sources for
query terms were:

» Original written query

» User interaction—discussions with an expert research user or “intermedi-
ary” prior to the search to identify good terms for the query

s Intermediary—suggestion by expert users during the search
m Thesaurus

» Relevance feedback—selection of terms could be selected by either the user
or the expert intermediary

Users chose forty-eight terms (eleven percent) of their search terms (over
forty queries) from relevance feedback. Of these, the end-user chose fifteen
and the expert chose thirty-three. This indicates a more advanced user is more
likely to take advantage of the opportunity to use relevance feedback.

Additionally, the study identified which section of documents users found
terms for relevance feedback. Some eighty-five percent of the relevance feed-
back terms came from the title or the descriptor fields in the documents, and
only two terms came from the abstract of the document. This study concluded
that new systems should focus on using only the title and descriptor elements
of documents for sources of terms during the relevance feedback stages.

3.2 Clustering

Document clustering attempts to group documents by content to reduce the
search space required to respond to a query. For example, a document collec-
tion that contains both medical and legal documents might be clustered such
that all medical documents are placed into one cluster, and all legal documents
are assigned to a legal cluster (see Figure 3.2). A query over legal material

106 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Figure 3.2. Document Clustering

(Document Collection)
————— -~ e e - - - - -——-——————
‘ w Ll :
" 1 Iy !
' 1 - |
i I 1y |
| : [= i — [} 1 |
[} 1 I 1 I
.]] 1 . . 1
' Medical , (____ | Legal _ _, ! Financial ,
\. J

might then be directed (either automatically or manually) to the legal docu-
ment cluster.

Several clustering algorithms have been proposed. In many cases, the evalu-
ation of clustering algorithms has been challenging because it is difficult to au-
tomatically point a query at a document cluster. Viewing document clustering
as a utility to assist in ad hoc document retrieval, we now focus on clustering
algorithms and examine the potential uses of these algorithms in improving
precision and recall of ad hoc and manual query processing.

Another factor that limits the widespread use of clustering algorithms is
their computational complexity. Many algorithms begin with a matrix that
contains the similarity of each document with every other document. For a

1,000,000 document collection, this matrix has L@%@Z different elements.
Each of these pair-wise similarity calculations is computationally expensive
due to the same factors found in the traditional retrieval problem. Namely,
when considering each document as a matrix with size corresponding to the
number of terms in the lexicon, calculating the similarity between a pair of
documents requires comparison across the union of each of their non-zero ma-
trix components. This is complicated by the fact that the document matrices
are exceedingly sparse, as many terms appear in only a single document.

This may be an area where clustering will be computationally feasible enough
to implement on a large scale. Also, initial work on a Digital Array Processor
(DAP) was done to improve run-time performance of clustering algorithms by
"using parallel processing [Rasmussen and Willett, 1989]. Subsequently, these
algorithms were implemented on a parallel machine with a torus interconnec-
tion network [Ruocco and Frieder, 1997].

A detailed review of clustering algorithms is given in [Salton, 1989]. Clus-
ters are formed with either a top-down or bottom-up process. In a top-down
approach, the entire collection is viewed as a single cluster and is partitioned
into smaller and smaller clusters. The bottom-up approach starts with each

Retrieval Utilities 107

document being placed into a separate cluster of size one and these clusters are
then glued to one another to form larger and larger clusters. The bottom up
approach is referred to as hierarchical agglomerative because the result of the
clustering is a hierarchy (as clusters are pieced together, a hierarchy emerges).

Other clustering algorithms, such as the popular K-Means algorithm, use
an iterative process that begins with random cluster centroids and iteratively
adjusts them until some termination condition is met. Some studies have
found that hierarchical algorithms, particularly those that use group-average
cluster merging schemes, produce better clusters because of their complete
document-to-document comparisons [Larsen and Aone, 1999, Willet, 1988,
Dubes and Jain, 1988]. More recent work has indicated that this may not
be true across all metrics and that some combination of hierarchical and itera-
tive algorithms yields improved effectiveness [Steinbach et al., 2000, Zhao and
Karypis, 2002]. As these studies use a variety of different experiments, employ
different metrics and (often very small) document collections, it is difficult to
conclude which clustering method is definitively superior

3.2.1 Result Set Clustering

Clustering was used as a utility to assist relevance feedback [Lu et al., 1996).
In those cases only the results of a query were clustered (a much smaller docu-
ment set), and in the relevance feedback process, by only new terms from large
clusters were selected.

Recently, Web search results were clustered based on significant phrases in
the result set [Zeng et al., 2004]. First, documents in a result set are parsed,
and two term phrases are identified. Characteristics about these phrases are
then used as input to a model built by various learning algorithms (e.g.; linear
regression, logistic regression, and support vector regression are used in this
work). Once the most significant phrases are identified they are used to build
clusters. A cluster is initially identified as the set of documents that contains
one of the most significant phrases. For example, if a significant phrase con-
tained the phrase “New York”, all documents that contain this phrase would be
initially placed into a cluster. Finally, these initial clusters are merged based
on document-document similarity.

3.2.2 Hierarchical Agglomerative Clustering

First the N x N document similarity matrix is formed. Each document is
placed into its own cluster. The following two steps are repeated until only one
cluster exists.

108 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

» The two clusters that have the highest similarity are found.

= These two clusters are combined, and the similarity between the newly
formed cluster and the remaining clusters recomputed.

As the larger cluster is formed, the clusters that merged together are tracked
and form a hierarchy.

Assume documents A, B, C, D, and E exist and a document-document sim-
ilarity matrix exists. At this point, each document is in a cluster by itself:

{{a} {B} {C} {D} {E}}

We now assume the highest similarity is between document A and document
B. So the contents of the clusters become:

{{A.B} {C} {D} {E}}

After repeated iterations of this algorithm, eventually there will only be a single
cluster that consists of {A,B,C,D,E}. However, the history of the formation of
this cluster will be known. The node {AB} will be a parent of nodes {A}
and {B} in the hierarchy that is formed by clustering since both A and B were
merged to form the cluster {AB}. '

Hierarchical agglomerative algorithms differ based on how {A} is combined
with {B} in the first step. Once it is combined, a new similarity measure
is computed that indicates the similarity of a document to the newly formed
cluster {AB}.

3.2.2.1 Single Link Clustering

The similarity between two clusters is computed as the maximum similarity
between any two documents in the two clusters, each initially from a separate
cluster. Hence, if eight documents are in cluster A and ten are in cluster B, we
compute the similarity of A to B as the maximum similarity between any of
the eight documents in A and the ten documents in B.

3.2.2.2 Complete Linkage

Inter-cluster similarity is computed as the minimum of the similarity be-
tween any documents in the two clusters such that one document is from each
cluster.

3.2.2.3 Group Average

Each cluster member has a greater average similarity to the remaining mem-
bers of that cluster than to any other cluster. As a node is considered for a clus-
ter its average similarity to all nodes in that cluster is computed. It is placed in

Retrieval Utilities 109

the cluster as long as its average similarity is higher than its average similarity
for any other cluster.

3.2.24 Ward’s Method

Clusters are joined so that their merger minimizes the increase in the sum
of the distances from each individual document to the centroid of the cluster
containing it [El-Hamdouchi and Willett, 1986]. The centroid is defined as the
average vector in the vector space. If a vector represents the i£* document,
D; =< ty,ts,...,t, >, the centroid C is written as C =< cy, ca,...,cq >.
The jt* element of the centroid vector is computed as the average of all of the
7 elements of the document vectors:

Ci = Z?:l tl]
===
n

Hence, if cluster A merged with either cluster B or cluster C, the centroids
for the potential cluster AB and AC are computed as well as the maximum dis-
tance of any document to the centroid. The cluster with the lowest maximum

is used.

3.2.2.5 Analysis of Hierarchical Clustering Algorithms

A paper that describes the implementation of all of these algorithms found
that Ward’s method typically took the longest to implement, with single link
and complete linkage being somewhat similar in run-time [El-Hamdouchi and
Willett, 1989].

A summary of several different studies on clustering is given in [Burgin,
1995]. In most studies, clusters found in single link clustering tend to be fairly
broad in nature and provide lower effectiveness. Choosing the best cluster as
the source of relevant documents resulted in very close effectiveness results
for complete link, Ward’s, and group average clustering. A consistent drop in
effectiveness for single link clustering was noted.

3.2.3 Clustering Without a Precomputed Matrix

Other approaches exist in which the N x N similarity matrix indicates that
the similarity between each document and every other document is not re-
quired. These approaches are dependent upon the order in which the input text
is received, and do not produce the same result for the same set of input files.

3.2.3.1 One-Pass Clustering

One approach uses a single pass through the document collection. The first
document is assumed to be in a cluster of size one. A new document is read
as input, and the similarity between the new document and all existing clusters
is computed. The similarity is computed as the distance between the new doc-

110 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

ument and the centroid of the existing clusters. The document is then placed
into the closest cluster, as long as it exceeds some threshold of closeness. This
approach is very dependent on the order of the input. An input sequence of
documents 1,2, ..., 10 can result in very different clusters than any other of
the (10! — 1) possible orderings.

Since resulting clusters can be too large, it may be necessary to split them
into smaller clusters. Also, clusters that are too small may be merged into
larger clusters.

3.2.3.2 Rocchio Clustering

Rocchio developed a clustering algorithm in 1966 [Rocchio, 1966], in which
all documents are scanned and defined as either clustered or loose. An unclus-
tered document is tested as a potential center of a cluster by examining the
density of the document and thereby requiring that n; documents have a sim-
ilarity coefficient of at least p; and at least no documents have a correlation
of po. The similarity coefficient Rocchio most typically used was the cosine
coefficient. If this is the case, the new document is viewed as the center of
the cluster and the old documents in the cluster are checked to ensure they are
close enough to this new center to stay in the cluster. The new document is
then marked as clustered.

If a document is outside of the threshold, its status may change from clus-
tered to loose. After processing all documents, some remain loose. These are
added to the cluster whose centroid the document is closest to (revert to the
single pass approach).

Several parameters for this algorithm were described in 1971 by Grauer and
Messier [Grauer and Messier, 1971]. These included:

s Minimum and maximum documents per cluster

» Lower bound on the correlation between an item and a cluster below which
an item will not be placed in the cluster. This is a threshold that would be
used in the final cleanup phase of unclustered items.

= Density test parameters (nq, na, p1, P2)

= Similarity coefficient

3.2.3.3 K-Means

The popular K-means algorithm is a partitioning algorithm that iteratively
moves k centroids until a termination condition is met. Typically, these cen-
troids are initially chosen at random. Documents are assigned to the cluster
corresponding to the nearest centroid. Each centroid is then recomputed. The
algorithm stops when the centroids move so slightly that they fall below a

Retrieval Utilities 111

user-defined threshold or a required information gain is achieved for a given
iteration [Willett, 1990].

3.2.3.4 Buckshot Clustering

Buckshot clustering is a clustering algorithm designed so that it runs in
O(kn) time where k is the number of clusters that are generated and n is the
number of documents. For applications where the number of desired clusters
is small, the clustering time is close to O(n) which is a clear improvement over
the O(n?) alternatives that require a document-document similarity matrix.

Buckshot clustering works by choosing a random sample of vkn docu-
ments. These vkn documents are then clustered by a hierarchical clustering
algorithm (any one will do). Using this approach, k clusters can be identified
from the cluster hierarchy. The hierarchical clustering algorithms all require
a DOC-DOC similarity matrix, so this step will require O(vkn’) = O(kn)
time. Once the k centers are found, the remaining documents are then scanned
and assigned to one of the k centers based on the similarity coefficient be-
tween the incoming document and each of the k centers. The entire algorithm
requires on the order of O(kn) time, as O(kn) is required to obtain the centers
and O(kn) is required to scan the document collection and assign each docu-
ment to one of the centers. Note that buckshot clustering can result in different
clusters with each running because a different random set of documents can be
chosen to find the initial k centers. Details of the buckshot clustering algorithm
and its analysis are given in [Cutting et al., 1992].

3.23.5 Non-negative Matrix Factorization

A more recent clustering algorithm uses non-negative matrix factorization
(NMF). This provides a latent semantic space (see Section 2.6) where each axis
represents the topic of each cluster. Documents are represented as a summation
of each axis and are assigned to the cluster associated with the axis for which
they have the greatest projection value [Xu et al., 2003].

3.24 Querying Hierarchically Clustered Collections

Once the hierarchy is generated, it is necessary to determine which portion
of the hierarchy should be searched. A top-down search starts at the root of the
tree and compares the query vector to the centroid for each subtree. The subtree
with the greatest similarity is then searched. The process continues until a leaf
is found or the cluster size is smaller than a predetermined threshold.

A bottom-up search starts with the leaves and moves upwards. Early work
showed that starting with leaves, which contained small clusters, was better
than starting with large clusters. Subsequently three different bottom-up pro-
cedures were studied [Willett, 1988]:

112 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

®» Assume a relevant document is available, and start with the cluster that
contains that document.

= Assume no relevant document is available. Implement a standard vector-
space query, and assume the top-ranked document is relevant. Start with
the cluster that contains the top-ranked document.

= Start with the bottom level cluster whose centroid is closest to the query.

Once the leaf or bottom-level cluster is identified, all of its parent clusters
are added to the answer set until some threshold for the size of the answer set
is obtained.

These three bottom-up procedures were compared to a simpler approach in
which only the bottom is used. The bottom-level cluster centroids are com-
pared to the query and the answer set is obtained by expanding the top n clus-
ters.

3.2.5 Efficiency Issues

Although the focus of this chapter is on effectiveness, the limited use of
clustering algorithms compels us to briefly mention efficiency concerns. Many
algorithms begin with a matrix that contains the similarity of each document
with every other document. For a 1,000,000 document collection, this matrix
has M elements. Algorithms designed to improve the efficiency of clus-
tering are given in [Voorhees, 1986], but at present, no TREC participant has

clustered the entire document collection.

3.2.5.1 Parallel Document Clustering

Another means of improving run-time performance of clustering algorithms
is to implement them on a parallel processor (see Chapter 7). Initial work on
a Digital Array Processor (DAP) was done to improve the run-time of clus-
tering algorithms by using parallel processing [Rasmussen and Willett, 1989].
These algorithms were implemented on a parallel machine with a torus in-
terconnection network [Ruocco and Frieder, 1997]. A parallel version of the
Buckshot clustering algorithm (see Section 3.2.3.4) was developed that showed
near-linear speedup on a network of sixteen workstations. This enables Buck-
shot to scale to significantly larger collections and provides a parallel hier-
archical agglomerative algorithm [Jensen et al.,, 2002]. There exists some
other work specifically focused on parallel hierarchical clustering [Zhang et al.,
1996, Guha et al., 1988], but these algorithms often have large computational
overhead or have not been evaluated for document clustering. Some work was
done in developing parallel algorithms for hierarchical document clustering
[Olson, 1995], however these algorithms were developed for several types of
specialized interconnection networks, and it is unclear whether they are appli-

Retrieval Utilities 113

cable to the simple bus connection that is common for many current parallel
architectures.

Additional proposals use clustering as a utility to assist relevance feedback
[Lu et al., 1996]. Only the results of a query are clustered (a much smaller
document set), and relevance feedback proceeds by only obtaining new terms
from large clusters.

3.2.5.2 Clustering with Truncated Document Vectors

The most expensive step in the clustering process occurs when the distance
between the new document and all existing clusters is computed. This is typi-
cally done by computing the centroid of each cluster and measuring the cosine
of the angle between the new document vector and the centroid of each cluster.
Later, it was shown that clustering can be done with vectors that use only a few
representative terms from a document [Schutze and Silverstein, 1997].

One means of reducing the size of the document vector is to use Latent Se-
mantic Indexing (see Section 2.6) to identify the most important components.
Another means is to simply truncate the vector by removing those terms with a
weight below a given threshold. No significant difference in effectiveness was
found for a baseline of no truncation, or using latent semantic indexing with
twenty, fifty, and one hundred and fifty terms or simple truncation with fifty
terms.

3.3 Passage-based Retrieval

Passage-based retrieval [Callan, 1994], is based on the premise that only a
small portion of each relevant document (i.e., the relevant passage within the
document) contains the information that is relevant to the query. By comput-
ing metrics that compare the entire document to the query, the noisy parts of
the document (the sections that are nonrelevant) potentially mask the relevant
segment of the document.

For instance, consider this book. This section is the only section that con-
tains relevant information in response to a query that searches for passage-
based retrieval. If the entire book was viewed as a single document, this sec-
tion might contribute very little to the overall similarity coefficient between the
book and the passage.

Since documents often are naturally segmented into chapters, sections, and
subsections, it is reasonable to use each of these author-determined boundaries
and simply rank the passages to the original query. A similarity coefficient
must then merge the passage-based results and obtain a final coefficient.

Consider a document D; with sections A, B, C, and D. Further assume sec-
tion C is the only section that mentions anything about the query. A similarity
coefficient SC(Q, D;) could result in a coefficient that is heavily biased to-
wards nonrelevance because sections A, B, and D have many terms that do

114 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

not match with terms in the query. The similarity coefficient reflects this and
given the length of the document and the relatively small proportion of match-
ing terms, or even terms that are semantically related, the document would
have a low similarity coefficient. With passage-based retrieval, four separate
coefficients are computed: SC(Q,A), SC(Q,B), SC(Q,C), and SC(Q,D). The
four different similarity coefficients would then be merged. Several different
techniques for merging these components are presented.

Passage-based research focuses on determining how to delimit a passage
and combine each passage into a single similarity coefficient. The following
sections discuss each of these problems and demonstrate some initial work in
each area.

3.3.1 Marker-based Passages

Marker-based passages use section headers or paragraph indentation and
vertical space as a means of partitioning passages. SGML tags found in long
Federal Register documents were used in [Zobel et al., 1995].

In similar work, paragraph markers were used. To avoid very long or short
paragraphs, long paragraphs were partitioned based on size and short para-
graphs were glued together. The passages were bounded such that no passage
contained fewer than fifty terms or was larger than 200 terms [Callan, 1994].
In [Zobel et al., 1995] passages were glued together until a size of p was ex-
ceeded. In both papers, modest improvement occurred, but results given with
the Federal Register should be viewed with care as there are comparatively few
relevant documents in this particular collection. The reason given for the lim-
ited success of this intuitively appealing approach is that the paragraph markers
and section markers are prone to error on the part of the author and may not
have resulted in a good semantic partitioning (i.e., one passage might have
described numerous concepts).

3.3.2 Dynamic Passage Partitioning

Different approaches have been used to automatically find good partitions.
These approaches attempt to partition documents differently based on the par-
ticular query [Callan, 1994]. One means of doing this is to find a term that
matches the query and then build a passage around this match. If a term
matches at position n, passage A will begin at position n and continue until
position n + p where p is a variable passage size. The next passage, B, will
overlap with A and start at position n + £. Figure 3.3 illustrates the difference
between overlapping and non-overlapping passages. For a term that matches
at position ten, a small passage length of fifty results in passages around the
terms [10, 60], [35, 85], [60, 110], etc. where [i, j] indicates the passage starts

Retrieval Utilities 115

at position 7 and continues to j. Overlapping passages are intended to avoid
splitting sections of relevant text.

Figure 3.3. Overlapping vs Non-Overlapping Passages

Non-overlapping Overlapping

Passage 2

3.3.3 Merging Passage-based Similarity Measures

Passages contribute to the similarity coefficient in a number of different
ways. One study tested twenty different methods of merging passage-based
contributions [Wilkinson, 1994]. These methods ranged from simply taking
the highest ranked passage as the similarity coefficient to combining document
level contributions with passage level contributions. The work done in [Callan,
1994] also used a combination score with the document and the passage level
evidence to obtain their best results. Similar results also occurred in [Wilkin-
son, 1994].

34 N-grams

Term-based search techniques typically use an inverted index or a scan of
the text (details surrounding inverted index construction and search are given in
Chapter 5). Additionally, queries that are based on exact matches with terms in
a document perform poorly against corrupted documents. This occurs regard-
less of the source of the errors—either OCR (optical character recognition)
errors or those due to misspelling. To provide resilience to noise, n-grams
were proposed. The premise is to decompose terms into word fragments of

116 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

size n, then design matching algorithms that use these fragments to determine
whether or not a match exists.

N-grams have also been used for detection and correction of spelling er-
rors [Pollock and Zamora, 1984, Thorelli, 1962, Zamora et al., 1981] and text
compression [Yannakoudakis et al., 1982]. A survey of automatic correction
techniques is found in [Kukich, 1992]. Additionally, n-grams were used to
determine the authorship of documents [Kjell et al., 1994]. Traditional infor-
mation retrieval algorithms based on n-grams are described in [D’Amore and
Mah, 1985, Damashek, 1995, Pearce and Nicholas, 1993, Teuful, 1988, Cavnar
and Vayda, 1993].

34.1 D’Amore and Mah

Initial information retrieval research focused on n-grams as presented in
[D’ Amore and Mah, 1985]. The motivation behind their work was the fact that
it is difficult to develop mathematical models for terms since the potential for
a term that has not been seen before is infinite. With n-grams, only a fixed
number of n-grams can exist for a given value of n. A mathematical model
was developed to estimate the noise in indexing and to determine appropriate
document similarity measures.

D’ Amore and Mah’s method replaces terms with n-grams in the vector space
model. The only remaining issue is computing the weights for each n-gram.
Instead of simply using n-gram frequencies, a scaling method is used to nor-
malize the length of the document. D’ Amore and Mah’s contention was that a
large document contains more n-grams than a small document, so it should be
scaled based on its length.

To compute the weights for a given n-gram, D’ Amore and Mah estimated
the number of occurrences of an n-gram in a document. The first simplifying
assumption was that n-grams occur with equal likelihood and follow a binomial
distribution. Hence, it was no more likely for n-gram “ABC” to occur than
“DEF.” The Zipfian distribution that is widely accepted for terms is not true for
n-grams. D’ Amore and Mah noted that n-grams are not equally likely to occur,
but the removal of frequently occurring terms from the document collection
resulted in n-grams that follow a more binomial distribution than the terms.

D’ Amore and Mah computed the expected number of occurrences of an n-
gram in a particular document. This is the product of the number of n-grams
in the document (the document length) and the probability that the n-gram
occurs. The n-gram’s probability of occurrence is computed as the ratio of
its number of occurrences to the total number of n-grams in the document.
D’ Amore and Mah continued their application of the binomial distribution to
derive an expected variance and, subsequently, a standard deviation for n-gram

Retrieval Utilities 117

occurrences. The final weight for n-gram ¢ in document j is:

fii — €35
_ Jij — Gy
wij = =
Tij

where:

fij = frequency of an n-gram i in document j

e;; = expected number of occurrences of an n-gram ¢ in document j

oij = standard deviation

The n-gram weight designates the number of standard deviations away from
the expected value. The goal is to give a high weight to an n-gram that has oc-
curred far more than expected and a low weight to an n-gram that has occurred
only as often as expected.

D’Amore and Mah did several experiments to validate that the binomial
model was appropriate for n-grams. Unfortunately, they were not able to test
their approach against a term-based one on a large standardized corpus.

3.42 Damashek

Damashek expanded on D’ Amore and Mah’s work by implementing a five-
gram-based measure of relevance [Damashek, 1995]. Damashek’s algorithm
relies upon the vector space model, but computes relevance in a different fash-
ion. Instead of using stop words and stemming to normalize the expected oc-
currence of n-grams, a centroid vector is used to eliminate noise. To compute
the similarity between a query and a document, the following cosine measure
is used:

b (wgj — pQ)(wg — 1p)
\E§=1(wqj — pg)? Y51 (waj — pp)?

Here p1q and pq represent centroid vectors that are used to characterize the
query language and the document language. The weights, w,; and wg; indicate
the term weight for each component in the query and the document vectors.
The centroid value for each n-gram is computed as the ratio of the total number
of occurrences of the n-gram to the total number of n-grams. This is the same
value used by D’ Amore and Mah. It is not used as an expected probability for
the n-grams, but merely as a characterization of the n-gram’s frequency across
the document collection. The weight of a specific n-gram in a document vector
is the ratio of the number of occurrences of the n-gram in the document to the
total number of all of the n-grams in the document. This “within document
frequency” is used to normalize based on the length of a document, and the

SC(Q,D) =

118 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

centroid vectors are used to incorporate the frequency of the n-grams across
the entire document collection.

By eliminating the need to remove stop words and to support stemming,
(the theory is that the stop words are characterized by the centroid so there was
no need to eliminate them), the algorithm simply scans through the document
and grabs n-grams without any parsing. This makes the algorithm language
independent. Additionally, the use of the centroid vector provides a means of
filtering out common n-grams in a document. The remaining n-grams are re-
verse engineered back into terms and used as automatically assigned keywords -
to describe a document. A description of this reverse engineering process is
given in [Cohen, 1995]. Proof of language independence is given with tests
covering English, German, Spanish, Georgian, Russian, and Japanese.

3.4.3 Pearce and Nicholas

An expansion of Damashek’s work uses n-grams to generate hypertext links
[Pearce and Nicholas, 1993]. The links are obtained by computing similarity
measures between a selected body of text and the remainder of the document.
After a user selects a body of text, the five-grams are identified, and a vector
representing this selected text is constructed. Subsequently, a cosine similar-
ity measure is computed, and the top rated documents are then displayed to
the user as dynamically defined hypertext links. The user interface issues sur-
rounding hypertext is the principal enhancement over Damashek’s work. The
basic idea of constructing a vector and using a centroid to eliminate noise re-
mains intact.

344 Teufel

Teufel also uses n-grams to compute a measure of similarity using the vector
space model [Teuful, 1988]. Stop words and stemming algorithms are used and
advocated as a good means of reducing noise in the set of n-grams. However,
his work varies from the others in that he used a measure of relevance that is
intended to enforce similarity over similar documents. The premise was that
if document A is similar to B, and B is similar to C, then A should be roughly
similar to C. Typical coefficients, such as inner product, Dice, or Jaccard (see
Section 2.1.2), are non-transitive. Teufel uses a new coefficient, H, where:

H=X+Y - (XY)

and X is a direct similarity coefficient (in this case Dice was used, but Jaccard,
cosine, or inner product could also have been used) and Y is an “indirect”
measure that enforces transitivity. With the indirect measure, document A is

Retrieval Utilities 119

identified as similar to document C. A more detailed description of the indirect
similarity measure is given in [Teuful, 1991].

Good precision and recall was reported for the INSPEC document collec-
tion. Language independence was claimed in spite of reliance upon stemming
and stop words.

3.4.5 Cavnar and Vayda

N-grams were also proposed in [Cavnar, 1993, Cavnar and Vayda, 1993].
Most of this work involves using n-grams to recognize postal addresses. N-
grams were used due to their resilience to errors in the address. A simple
scanning algorithm that counts the number of n-gram matches that occur be-
tween a query and a single line of textin a document was used. No weighting
of any kind was used, but, by using a single text line, there is no need to nor-
malize for the length of a document. The premise is that the relevant portion
of a document appears in a single line of text.

Cavnar’s solution was the only documented approach tested on a large stan-
dardized corpus. For the entire TIPSTER document collection, average pre-
cision of between 0.06 and 0.15 was reported. It should be noted that for
the AP portion of the collection an average precision of 0.35 was obtained.
These results on the AP documents caused Cavnar to avoid further tuning.
Unfortunately, results on the entire collection exhibited relatively poor perfor-
mance. Regarding these results, the authors claimed that,“It is unclear why
there should be such variation between the retrievability of the AP documents
and the other document collections.”

3.5 Regression Analysis

Another approach to estimating the probability of relevance is to develop
variables that describe the characteristics of a match to a relevant document.
Regression analysis is then used to identify the exact parameters that match the
training data. For example, if trying to determine an equation that predicts a
person’s life expectancy given their age:

Age | Life Expectancy
45 72
50 74
70 80

A simple least squares polynomial regression could be implemented, that would
identify the correct values of « and 3 to predict life expectancy (LE) based on
age (A):

LE=aA+(

120 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

For a given age, it is possible to find the related life expectancy. Now, if we
wish to predict the likelihood of a person having heart disease, we might obtain
the following data:

Age | Life Expectancy | Heart Disease
45 72 yes
50 74 no
70 80 yes

We now try to fit a line or a curve to the data points such that if a new person
shows up and asks for the chance of their having heart disease, the point on the
curve that corresponds to their age could be examined. This second example is
more analogous to document retrieval because we are trying to identify charac-
teristics in a query-document match that indicate whether or not the document
is relevant. The problem is that relevance is typically given a binary (1 or 0)
for training data—it is rare that we have human assessments that the document
is “kind of" relevant. Note that there is a basic independence assumption that
says age will not be related to life expectancy (an assumption we implied was
false in our preceding example). Logistic regression is typically used to esti-
mate dichotomous variables—those that only have a small set of values, (i.e.,
gender, heart disease present, and relevant documents).

Focusing on information retrieval, the problem is to find the set of variables
that provide some indication that the document is relevant.

Matching Terms | Size of Query | Size of Document | Relevant?
5 10 30 yes
8 20 45 no

Six variables used in [Fontaine, 1995] are given below:

=" The mean of the total number of matching terms in the query.

= The square root of the number of terms in the query.

= The mean of the total number of matching terms in the document,

s The square root of the number of terms in the document.

The average idf of the matching terms.

The total number of matching terms in the query.

A brief overview of polynomial regression and the initial use of logistic
regression is given in [Cooper et al., 1992]. However, the use of logistic re-
gression requires the variables used for the analysis to be independent. Hence,

Retrieval Utilities 121

the logistic regression is given in two stages. Composite clues which are com-
posed of independent variables are first estimated. Assume clues 1-3 above are
found in one composite clue and 4-6 are in the second composite clue. The
two stages proceed as follows:

Stage 1:
A logistic regression is done for each composite clue.

logO(RlCl) = co+cXi+cXe+ Q3X3
logO(RlC-z) = do+di1 X4+ do X5+ d3 X

At this point the coefficients ¢g, 1, C2,C3 are computed to estimate the rele-
vance for the composite clue Ci. Similarly, do, d1, d2, d3 estimate the rele-
vance of Ca.

Stage 2:

The second stage of the staged logistic regression attempts to correct for
errors induced by the number of composite clues. As the number of composite
clues grows, the likelihood of error increases. For N composite clues, the
following logistic regression is computed:

lOgO(R|Cl,Cz,...,CN) = 60+612+62N

where Z is computed as the sum of the composite clues or:

N
Z =Y log O(R|Ci)

i=1

The results of the first stage regression are applied to the second stage. It
should be noted that further stages are possible.

Once the initial regression is completed, the actual computation of simi-
larity coefficients proceeds quickly. Composite clues are only dependent on
the presence or absence of terms in the document and can be precomputed.
Computations based on the number of matches found in the query and the doc-
ument are done at query time, but involve combining the coefficients computed
in the logistic regression with the precomputed segments of the query. Further
implementation details are found in [Fontaine, 1995].

The question is whether or not the coefficients can be computed in a generic
fashion that is resilient to changes in the document collection. The appealing
aspects of this approach are that experimentation can be done to identify the

122 INFORMATION RETRIEVAL:ALGORITHMS AND HEURIST] cs

best clues, and the basic independence assumptions are avoided. Additionally,
the approach corrects for errors incurred by the initial logistic regression.

3.6 Thesauri

One of the most intuitive ideas for enhancing effectiveness of an information
retrieval system is to include the use of a thesaurus. Almost from the dawn of
the first information retrieval systems in the early 1960’s, researchers focused
on incorporating a thesaurus to improve precision and recall. The process of
using a thesaurus to expand a query is illustrated in Figure 3.4.

Figure 3.4. Using a Thesaurus to Expand a Query

Original query

G: Q2 -y G — Tr'\gz:::‘l;us

Expanded query
Q1 Gz, -, G

Results

Retrieval

A thesaurus, at first glance, might appear to assist with a key problem—two
people very rarely describe the same concepts with the same terms (i.e., one
person will say that they went to a parry while another person might call it a
gathering). This problem makes statistical measures that rely on the number
of matches between a query term and the document terms somewhat brittle
when confronted with semantically equivalent terms that happen to be syntac-
tically distinct. A query that asks for information about dogs is probably also
interested in documents about canines.

A document relevant to a query might not match any of the terms in the
query. A thesaurus can be used either to assign a common term for all syn-

Retrieval Utilities 123

onyms of a term, or to expand a query to include all synonymous terms. Intu-
itively this should work fine, but unfortunately, results have not been promis-
ing. This section describes the use of hand-built thesauri, a very labor intensive
means of building a thesaurus, as well as the quest for a sort of holy grail of
information retrieval, an automatically generated thesaurus.

3.6.1 Automatically Constructed Thesauri

A hand-built thesaurus might cover general terms, but it lacks domain-
specific terms. A medical document collection has many terms that do not oc-
cur in a general purpose thesaurus. To avoid the need for numerous hand-built
domain-specific thesauri, automatic construction methods were implemented.

3.6.1.1 Term Co-occurrence

An early discussion of automatic thesaurus generation is found in [Salton,
1971c). The key to this approach is to represent each term as a vector. The
terms are then compared using a similarity coefficient that measures the Eu-
clidean distance, or angle, between the two vectors.

To form a thesaurus for a given term t, related terms for t are all thosc
terms u such that SC(t, u) is above a given threshold. Note, this is an O(t*}
process so it is often common to limit the terms for which a related term list is
built. This is done by using only those terms that are not so frequent that they
become stop terms, but not so infrequent that there is little chance they have
many synonyms.

Consider the following example:
D;: “adog will bark at a cat in a tree”
Do: “ants eat the bark of a tree ”

This results in the term-document occurrence matrix found in Table 3.1.

To compute the similarity of term ¢ with term 4, a vector of size N, where N
is the number of documents, is obtained for each term. The vector corresponds
to a row in the following table. A dot product similarity between “bark” and
“tree” is computed as:

SC(bark,tree) =<11>e<11> = 2

The corresponding term-term similarity matrix is given in Table 3.2.

The matrix is symmetric as SC(t1,t2) is equivalent to SC(ta,t1). The
premise is that words are similar or related to the company they keep. Con-
sider “tree” and “bark”’; in our example, these terms co-occur twice in two doc-
uments. Hence, this pair has the highest similarity coefficient. Other simple
extensions to this approach are the use of word stems instead of whole terms
(for more on stemming see Section 3.8.1). The use of stemming is important
here so that the term cat will not differ from cats. The tf-idf measure can be

124 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Table 3.1. _Term-Document Matrix
term Dy Do
a 3 |
ants 0 1
at | 0
bark 1 1
cat | 0
dog 1 0
eat 0 T
in 1 0
of 0 1
the 0 1
tree 1 |
will 1 0

Table 3.2. Term-Term Similarity Matrix

term | a | ants | at | bark [cat [dog | eat | in | of | the | tree | will
a 0 1 3 4 3 3 1 3 I 1 4 3
ants | 1 0 0 I 0 0 1 0 1 1 1 0
at 3 0 0 I 1 1 0 1 0 0 1 0
bark | 4 1 I 0 1 1 I 1 1 1 2 1
cat 3 0 1 1 0 1 0 1 0 0 1 1
dog | 3 0 1 1] 0 0 1 0 1 1 1
eat 1 I 0 1 0 0 0 0 1 0 1 0
in 3 0 1] 1 l 0 010 0 1 1
of 1 1 0 1 0 0 1 100 1 1 0
the I 1 0 1 0 0 1 0 1 0 1 0
tree | 4 1 I 2 1 1 1 1 1 1 0 1
will | 3 0 1 1 1 1 0 1 0 0 1 0

used in the term-term similarity matrix to give more weight to co-occurrences
between relatively infrequent terms.

Early work done with the term-term similarity matrix was given in [Minker
et al., 1972]. This paper summarizes much of the work done in the 1960’s us-
ing term clustering, and provides some additional experiments [Salton, 1971,
Sparck Jones and Jackson, 1968, Sparck Jones and Barber, 1971]. The com-
mon theme of these papers is that the term-term similarity matrix can be con-
structed, and then various clustering algorithms can be used to build clusters
of related terms.

Once the clusters are built, they are used to expand the query. Each term in
the original query is found in a cluster that was included in some portion or all
(depending on a threshold) elements of its cluster. Much of the related work

Retrieval Utilities 125

done during this time focused on different clustering algorithms and different
thresholds to identify the number of terms added to the cluster. The conclusion
was that the augmentation of a query using term clustering did not improve on
simple queries that used weighted terms.

Additional work with term-term similarity matrices is presented in [Chen
and Ng, 1995]. A domain-specific thesaurus was constructed on information
about the Caenorhabditis elegans worm in support of molecular biologists
[Chen et al., 1995]. A term-term similarity measure was built with phrases
and terms. A weight that used tf-idf but also included another factor p;, was
used where p; indicated the number of terms in phrase 7. Hence, a two-term
phrase was weighted double that of a single term. The new weight was:

N
wi; = tfij X log (d_z X pz>

Using this new weight, an asymmetric similarity coefficient was also devel-
oped. The premise was that the symmetric coefficients are not as useful for
ranking because a measurement between t;, t; can become very skewed if ei-
ther t; or t; occurs frequently. The asymmetric coefficient allows for a rank-
ing of an arbitrary term t;, frequent or not, with all other terms. Applying a
threshold to the list means that for each term, a list of other related terms is
generated—and this can be done for all terms.

The measurement for SC(t;,t;) is given as:

k=1 min(t fik, tfjk) log (d—?:; x pj> .
Dk=1 Wik J

SC(ti, t;) = (

where df;; is the number of co-occurrences of term i with term j. Two addi-
tional weights make this measure asymmetric: p; and W;. As we have said p;
is a small weight included to measure the size of term j. With all other weights
being equal, the measure: SC(food, apple pie) > SC(food, apple) since phrases
are weighted higher than terms. The weighting factor, W, gives additional
preference to terms that occur infrequently without skewing the relationship
between term i and term j. The weight W is given as:

s 3)
Wi = (log(%)

Consider the term york and its relationship to the terms new and castle. Assume
new occurs more frequently than castle. With all other weights being equal, the
new weight, W, causes the following to occur:

SC(york, castle) > SC(york, new)

126 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

This is done without regard for the frequency of the term york. The key is that
we are trying to come up with a thesaurus, or a list of related terms, for a given
term (i.e., york). When we are deriving the list of terms for new we might find
that york occurs less frequently than castle so we would have:

SC(new,york) > SC(new, castle)

Note that we were able to consider the relative frequencies of york and castle
with this approach. In this case:

SC(new, york) = SC(york, new)

The high frequency of the term new drowns out any real difference between
york and castle—or at least that is the premise of this approach. We note in our
example, that new york would probabiy be recognized as a phrase, but that is
not really pertinent to this example.

Hence, at this point, we have defined SC(t;,t;). Since the coefficient is
asymmetric we now give the definition of SC(t;, t;):

D k=1 man(t fig, t fi) log (3},’; X Pi)

D k=1 Wik

SC(fj,tz’)= X‘/V2

A threshold was applied so that only the top one hundred terms were used for
a given term. These were presented to a user. For relatively small document
collections, users found that the thesaurus assisted their recall. No testing of
generic precision and recall for automatic retrieval was measured.

3.6.1.2 Term Copiex:

Instead of relying oo tenn -0 urrence, some work uses the context (sur-
rounding terms) of r. 10 construct the vectors that represent each term
[Gauch and Wang, i996j. The problem with the vectors given above is that
they do not differentiate the senses of the words. A thesaurus relates words to
different senses. In the example given below, “bark™ has two entirely different
senses. A typical thesaurus lists “bark” as:

ACT i

bark—surface of tree (noun)
bark—dog sound (verb)

Ideally an automatically generated thesaurus would have separate lists of
synonyms. The term-term matrix does not specifically identify synonyms, and
Gauch and Wang do not attempt this either. Instead, the relative position of
nearby terms is included in the vector used to represent a term [Gauch and
Wang, 1996].

Retrieval Utilities 127

The key to similarity is not that two terms happen to occur in the same
document; it is that the two terms appear in the same context—that is they
have very similar neighboring terms.

Bark, in the sense of a sound emanating from a dog, appears in different
contexts than bark, in the sense of a tree surface. Consider the following three
sentences:

S1: “The dog yelped at the cat.”
So: “The dog barked at the cat.”
S3: “The bark fell from the tree to the ground.”

In sentences Sy and S, yelped is a synonym for barked, and the two terms
occur in exactly the same context. It is unlikely that another sense of bark
would appear in the same context. “Bark” as a surface of tree more commonly
would have articles at one position to the left instead of two positions to the
left, etc. :

To capture the term’s context, it is necessary to identify a set of context
terms. The presence or absence of these terms around a given target term will
determine the content of the vector for the target term. In [Gauch and Wang,
1996], the authors assume the highest frequency terms are the best context
terms, so the 200 most frequent terms (including stop terms) are used as context
terms. A window of size seven was used. This window includes the three terms
to the left of the target term and the three terms to the right of the target term.
The new vector that represents target term ¢ will be of the general form:

T; =< v_3V_9V_1V1V2V3 >

where each vector, v;, and i = -3, -2, -1, 1, 2, and 3 corresponds to a 200 ele-
ment vector that represents the context of the target term for a given position.
The vector v_3 contains a component for each of the 200 context terms that
occur three terms to the left of the target term. Similarly, the vector v3 contains
a component for each of the 200 context terms that occur three terms to the
right of the target.

The v; vectors are all concatenated to form the entire 7; vector for the term.
For a simple example, we build the context vectors for the terms bark and yelp
based on the document collection Sy, So, and S3. To simplify the example,
we assume that stemming is done to normalize bark and barked and that the
and at are the only two context terms occupying components one and two,
respectively, of the context vectors. For our test document collection we would
obtain:

128 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Toark = [< 00 >< 10 >< 10 >< 01 >< 10 >< 10 >]
Tyetp = [< 00 >< 10 >< 00 >< 01 >< 10 >< 00 >}

The matching of S; and Sy is the driving force between the two vectors being
very similar. The only differences occur because of the additional word sense
that occurs in Ss.

This example uses the frequency of occurrence of a context term as the
component of the context vectors. In [Gauch and Wang, 1996], the authors
use a measure that attempts to place more weight on context terms that occur
less frequently than might be expected. The actual component value of the jth
component of vector v;, is a mutual information measure. Let:

dfi; = frequency of co-occurrence of context term
J with target term ¢
tf; = total occurrences of context term i
in the collection
tf; = the total occurrences of context term j
in the collection

vy = log ((tfi)(tfj) * 1)

This gives a higher weight to a context term that appears more frequently with
a given target term than predicted by the overall frequencies of the two terms.
Gauch and Wang use the top 200 terms, with a seven term window size;
so each term vector is of size 1200. The vectors are then compared with a
standard cosine measure, and all terms with a similarity above a threshold are
used. The choice of which target words to choose is difficult, and after some
experimentation 4,000 target words were chosen from the frequency list.

Queries were then expanded using only the top n terms that fell above a
certain threshold. Unfortunately, average precision for the expanded query
was not significantly higher than without the expansion.

Analysis of the repeated failure of automatically generated thesauri built
from term-term similarity matrices is given in [Peat and Willett, 1991]. They
noted a key problem with using term co-occurrence to generate a thesaurus is
that relatively frequent terms co-occur with other frequent terms. The resultis a
thesaurus in which one relatively general term is found to be related to another
general term (e.g., hairy might be found to be related to furry). Although these

Retrieval Utilities 129

terms are related, they do not improve precision and recall because, due to their
relatively high frequency, they are not good discriminators.

Interestingly, an early paper showed that randomly selecting terms for ex-
pansion was sometimes more effective than using those generated by a term-
term similarity matrix [Smeaton and Rijsbergen, 1983]. Given a Zipfian distri-
bution [Zipf, 1949] most terms appear infrequently (over half occur only once),
so there is a good chance that the randomly selected terms were low frequency,
and hence, did not do as much damage as a high frequency non-discriminating
term.

3.6.1.3 Clustering with Singular Value Decomposition

Schutze and Pedersen use term clustering and a singular value decompo-
sition (SVD) to generate a thesaurus [Schutze and Pedersen, 1997]. First a
matrix, A, is computed for terms that occur 2000-5000 times. The matrix con-
tains the number of times these terms co-occur with a term window of size k (k
is 40 in this work). Subsequently, these terms are clustered into 200 A-classes
(group average agglomerative clustering is used—see Section 3.2.2.3). For ex-
ample, one A-class, ga1, might have terms (21, t2, t3) and another, ga2, would
have (t4,ts)-

Subsequently, a new matrix, B, is generated for the 20,000 most frequent
terms based on their co-occurrence between clusters found in the matrix. For
example, if term ¢; co-occurs with term ¢; ten times, term t» five times, and
term t4 six times, B[1, j] = 15 and B[2, j] = 6. Note the use of clusters has
reduced the size of the B matrix and provides substantially more training in-
formation. The rows of B correspond to classes in A, and the columns corre-
spond to terms. The B matrix is of size 200 x 20,000. The 20,000 columns are
then clustered into 200 B-classes using the buckshot clustering algorithm (see
Section 3.2.3.4).

Finally, a matrix, C, is formed for all terms in the collection. An entry
C[i, j] indicates the number of times term j co-occurs with the B-classes. Once
this is done, the C matrix is decomposed and singular values are computed to
represent the matrix. This is similar to the technique used for latent semantic
indexing (see Section 2.6). The SVD is more tractable at this point since only
200 columns exist.

A document is represented by a vector that is the sum of the context vectors
(vectors that correspond to each column in the SVD). The context vector is
used to match a query.

Another technique that uses the context vector matrix, is to cluster the query
based on its context vectors. This is referred to as word factorization. The
queries were partitioned into three separate clusters. A query is then run for
each of the word factors and a given document is given the highest rank of the
three. This requires a document to be ranked high by all three factors to receive

130 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

an overall high rank. The premise is that queries are generally about two or
three concepts and that a relevant document has information relevant to all of
the concepts.

Overall, this approach seems very promising. It was run on a reasonably
good-sized collection (the Category B portion of TIPSTER using term fac-
torization, average precision improved from 0.27 to 0.32—an 18.5% overall
improvement).

3.6.1.4 Using only Document Clustering to Generate a Thesaurus

Another approach to automatically build a thesaurus is described in [Crouch,
1989, Crouch, 1990]. First, a document clustering algorithm is implemented to
partition the document collection into related clusters. A document-document
similarity coefficient is used. Complete link clustering is used here, but other
clustering algorithms could be used (for more details on clustering algorithms
see Section 3.2).

The terms found in each cluster are then obtained. Since they occur in dif-
ferent documents within the cluster, different operators are used to obtain the
set of terms that correspond to a given cluster. Consider documents with the
following terms:

Dl = t11t27t3at4
Dy = ty,ty
D3 = t17t2

The cluster can be represented by the union of all the terms {t1,t2,t3,t4}, the
intersection {¢3}, or some other operation that considers the number of docu-
ments in the cluster that contain the term. Crouch found that simple clustering
worked the best. The terms that represented the cluster now appear as a the-
saurus class, in that they form the automatically generated thesaurus. The class
is first reduced to obtain only the good terms. This is done by using a term dis-
criminating function that is based on document frequency. (See Section 2.1 for
more details on document frequency).

Queries are expanded based on the thesaurus class. Any term that occurs
in the query that matches a term in the thesaurus class results in all terms in
the class being added to the query. Average precision was shown to improve
ten percent for the small ADI collection and fifteen percent for the Medlars
collection. Unfortunately, both of these results were for small collections, and
the document clustering is computationally expensive, requiring O(N?) time,
where N is the number of documents in the collection.

Retrieval Utilities 131

3.6.2 Use of Manually Generated Thesaurus

Although a manually generated thesaurus is far more time consuming to
build, several researchers have explored the use of such a thesaurus to improve
precision and recall.

3.6.2.1 Extended Relevance Ranking with Manual Thesaurus

A system developed in 1971 used computers to assist with the manual con-
struction of a thesaurus at the Columbia University School of Library Service.
The algorithm was essentially equivalent to a simple thesaurus editor [Hines
and Harris, 1971].

Manual thesaurus construction is typically used for domain-specific the-
sauri. A group of experts is convened, and they are asked to identify the rela-
tionship between domain-specific terms. Ghose and Dhawle note that manual
generation of these thesauri can be more difficult to build for social sciences
than natural sciences given that there is more disagreement about the meaning
of domain-specific terms in the social sciences [Ghose and Dhawle, 1977].

A series of handbuilt thesauri (each one was constructed by students) was
described in [Wang et ai., 1985]. These thesauri were generated by the rela-
tionships between two terms—such as dog is-a animal. Ultimately the thesauri
were combined into one that contained seven groups of relations. These groups
were:

» Antonyms

= All relations but antonyms

= All relations

s Part-whole and set relations

n Co-locaiion relations

» Taxonomy and synonymy relations
= Paradigmatic relations

The antonym relation irlentified terms that were opposites of one another (e.g.,
night, day) and is-part-of identifies entities that are involved in a bill-of-materials
relationship {e.g., tire, automobile). Co-location contains relations between
words that frequently co-occur in the same phrase or sentence. Taxonomy and
synonym represent synonyms. Paradigmatic relations relate different forms
of words that contain the same semantic core such as canine and dog. Ex-
periments in adding each or all of the térms from these relations were done
on a small document collection with relevance judgments obtained by the re-
searchers conducting the study. Use of all relations, with the exception of

132 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

antonyms, delivered the best average precision and recall, but there was little
overall improvement.

A study done in 1993 used a thesaurus containing three different relations:
equivalence (synonym), hierarchical (is-a), and associative relationships [Kris-
tensen, 1993]. Recall of a fairly large (227,000) document collection com-
posed of Finnish newspaper articles was shown to increase from 47 percent to
100 percent while precision only decreased from 62.5 percent to 51 percent.
Fortunately, the work was done on a large collection, however, the thesaurus
was hand-built for the test and contained only 1,011 concepts and a total of
1,573 terms. Only thirty queries were used, and the high results are clearly due
to “good” terms found in the thesaurus.

Given the nature of the highly specific thesaurus, this result might be very
similar in nature to the manual track of the TREC conference where partic-
ipants are allowed to hand-modify the original query to include more dis-
criminating terms. The synonym, narrower term, and related term searches
all showed a 10 to 20% increase in recall from a 50% baseline. The union
search (using all values) showed a rather high fifty percent increase in average
precision. This work does represent one of the few studies outside of the TIP-
STER collection that is run on a sizable collection. It is not clear, however,
how applicable the results are to a more general collection that uses a more
general thesaurus.

3.6.2.2 Extending Boolean Retrieval With a Hand Built Thesaurus

All work described attempts to improve relevance ranking using a thesaurus.
Lee et al., describe the extensions to the extended Boolean retrieval model as
a means of including thesaurus information in a Boolean request [Lee et al.,
1994]. A description of the extended Boolean model is found in Section 2.5.
Values for p were attempted, and a value of six (value suggested for standard
extended Boolean retrieval by Salton in [Salton, 1989]) was found to perform
the best. Results of this approach showed slightly higher effectiveness.

3.7 Semantic Networks

Semantic networks are based on the idea that knowledge can be represented
by concepts which are linked together by various relationships. A semantic
network is simply a set of nodes and arcs. The arcs are labelled for the type of
relationship they represent. Factual information about a given node, such as its
individual characteristic (color, size, etc.), are often stored in a data structure
called a frame. The individual entries in a frame are called slots [Minsky,
1975].

A frame for a rose can take the form:

Retrieval Utilities 133

(rose
(has-color red)
(height 2 feet)
(is-a flower)

)

Here the frame rose is a single node in a semantic network containing an-is-a
link to the node flower. The slots has-color and height store individual proper-
ties of the rose.

Natural language understanding systems have been developed to read hu-
man text and build semantic networks representing the knowledge stored in
the text [Schank, 1975, Schank and Lehnert, 1977, Gomez and Segami, 1989,
Gomez and Segami, 1991]. It turns out that there are many concepts that are
not easily represented (the most difficult ones are usually those that involve
temporal or spatial reasoning). Storing information in the sentence, “A rose
is a flower”, is easy to do as well as to store, “A rose is red”, but semantic
nets have difficulty with storing this information: “The rose grew three feet
last Wednesday and was taller than anything else in the garden.” Storing in-
formation about the size of the rose on different dates, as well as, the relative
location of the rose is often quite difficult in a semantic network. For a detailed
discussion see the section on “Representational Thorns™ about the large-scale
knowledge representation project called Cyc (a project in which a large portion
of common sense reasoning is being hand-crafted) [Lenat and Guha, 1989].

Despite some of the problems with storing complex knowledge in a seman-
tic network, research was done in which semantic networks were used to im-
prove information retrieval. This work yielded limited results and is highly
language specific, however, the potential for improvement still exists.

Semantic networks attempt to resolve the mismatch problem in which the
terms in a query do not match those found in a document, even though the
document is relevant to the query. Instead of matching characters in the query
terms with characters in the documents, the semantic distance between the
terms is measured (by various measures) and incorporated into a semantic net-
work. The premise behind this is that terms which share the same meaning
appear relatively close together in a semantic network. Spreading activation
is one means of identifying the distance between two terms in a semantic net-
work.

There is a close relationship between a thesaurus and a semantic network.
From the standpoint of an information retrieval system, a thesaurus attempts (o
solve the same mismatch problem by expanding a user query with related terms

134 INFORMATION RETRIEVAL:ALGORITHMS AND HE URISTICS

and hoping that the related terms will match the document. A semantic network
subsumes a thesaurus by incorporating links that indicate *“is-a-synonym-of™ or
“is-related-to," but a semantic network can represent more complex informa-
tion such as an is-a hierarchy which is not found in a thesaurus.

One semantic network used as a tool for information retrieval research is
WordNet [Beckwith and Miller, 1990]. WordNet is publicly available and con-
tains frames specifically designed for words (some semantic networks might
contains frames for more detailed concepts such as big-and-hairy-person).
WordNet can be found on the Web at: www.cogsci.princeton.edu/ wn.

WordNet contains different entries for the various semantic meanings of a
term. Additionally, various term relationships are stored including: synonyms,
antonyms (roughly the opposite of a word), hyponyms (lexical relations such
as is-a), and meronyms (is a part-of). Most nouns in WordNet are placed in the
is-a hierarchy while antonyms more commonly relate adjectives.

Interestingly, less commonly known relations of entailment and troponyms
are used to relate verbs. Two verbs are related by entailment when the first verb
entails the second verb. For example, to buy something entails that you will
pay for it. Hence, buy and pay are related by entailment. A troponym relation
occurs when the two activities related by entailment must occur at the same
time (temporally co-exterisive) such as the pair (limp, walk). Software used to
search WordNet is further described in [Beckwith and Miller, 1990).

Itis reasonable to assume that WordNet would help effectiveness by expand-
ing query terms with synsets found in WordNet. Initial work done by Voorhees
[Voorhees, 1993], however, failed to demonstrate an improvement in effective-
ness. Even with manual selection of synsets, effectiveness was not improved
when queries were expanded. A key obstacle was that terms in queries were
not often found in WordNet due to their specificity—terms such as National
Rifle Association are not in WordNet. Also, the addition of terms that have
multiple meanings or word senses significantly degrade effectiveness. More
recent work, with improvements to WordNet over time has incorporated care-
fully selected phrases and showed a small (roughly five percent) improvement
[Liu et al., 2004].

Semantic networks were used to augment Boolean retrieval and automatic
relevance ranking. We describe these approaches in the remainder of this sec-
tion.

3.7.1 Distance Measures

To compute the distance between a single node in a semantic network and
another node, a spreading activation algorithm is used. A pointer starts at each
of the two original nodes and links are followed until an intersection occurs
between the two points. The shortest path between the two nodes is used to
compute the distance. Note that the simple shortest path algorithm does not

Retrieval Utilities 135

apply here because there may be several links that exist between the same two
nodes. The distance between nodes a and b is:
Distance(a,b) = minimum number of edges separating a and b

3.7.1.1 R-distance

The problem of measuring the distance between two sets of nodes is more
complex. Ideally the two sets line up, for example “large rose” and “tall flower”
is one such example where “large” can be compared with “tall” and “rose”
can be compared with “flower.” The problem is that it is difficult to align the
concepts such that related concepts will be compared. Hence, the R-distance
defined in [Rada et al., 1987] takes all of the individual entries in each set and
averages the distance between all the possible combinations of the two sets.

If 2 document is viewed as a set of terms that are “AND”ed together, and a
query is represented as a Boolean expression in disjunctive normal form, then
the R-distance identifies a measure of distance between the Boolean query and
the document. Also, a NOT applied to a concept yields the distance that is
furthest from the concept. Hence, for a query Q for terms ((a AND b AND
¢) OR (e AND f)) and Document D with terms (t; AND t3), the similarity is
computed below.

d(a, tl) + d(aa t2) + d(b’ tl) + d(ba t2) + d(c, tl) + d(C, t2)
6

ci =

d(e, t1) + d(e, ta) + d(f, t1) + d(f, t2)
4

Ccy =

SC(Q,D) is computed now as the MIN(cy, c2). Essentially, each concept rep-
resented in the query is compared to the whole document and the similarity
measure is computed as the distance between the document and the closest
query concept.

Formally, the R-distance of a disjunctive normal form query Q, and a docu-
ment D with terms (¢1,t2,. . .,tn) and cij, indicates the j&* term in concept
is defined as:

SC(Q, D) = min (SCl(Cl, D), SCl(CQ, D), ceey SCl(Cm, D))

n m

i=1j=1

SC(Q,D) = 0, if Q=D

SCl(Ci, D)

1
mn

136 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

3.7.1.2 K-distance

A subsequent distance measure referred to as the K-distance was developed
in [Kim and Kim, 1990]. This measure incorporates weighted edges in the
semantic network. The distance defined between two nodes is obtained by
finding the shortest path between the two nodes (again by using spreading acti-
vation) and then summing the edges along the path. More formally the distance
between terms ¢; and ¢; is obtained by:

dij = Wt; 1, + Wz, 2o +...+ w:rn,tj
where the shortest path from ¢; to tjis: ti, xy,xa,. .., tj.

The authors treat NOT as a special case. Details are given in [Kim and Kim,
1990] but the basic idea is to dramatically increase the weights of the arcs that
connect the node that is being referenced with a NOT (referred to as separation
edges). Once this is done, any paths that include this node are much longer
than any other path that includes other terms not referenced by a NOT.

To obtain the distance between two sets, A and B, of nodes with weighted
arcs, the K-distance measure computes the minimum of the distances between
each node in set A and set B. These minimum distances are then averaged.
Since the weights on the arcs may not be equivalent in both directions, the
distance measure from A to B is averaged with the distance from B to A. For
our same query Q:

((@AND b AND ¢) OR (e AND f))
Assume document D has only two terms: (¢; AND t»), the similarity is com-
puted below.
min(d(a, t1),d(a, t3)) + min(d(b, t1), d(b, t2)) + min(d(c, t1),d(c, ta))
3

C) =

_ mm(d(e, tl)’ d(e’ tQ)) + mm(d(f, tl)a d(f’ t?))
B 2
SC(Q,D) is still the min(cy, c3). The value of SC(D,Q) would then be ob-
tained, and the two coefficients are then averaged to obtain the final similarity
measure.
The K-distance of a disjunctive normal form query Q and a document D
with terms (¢1,t9, ..., t,) is defined as:

sc(.0) - S0:@.D) +5€,(D,0)

SCl (Q, D) = min (SC2(C1, D), 802(02, D), cey SCQ(C,", D))

Retrieval Utilities 137

SCz(Ci, D) =

(}: min (d(cij, tﬁ))
j=1

S|

SC(Q,D)=0, if Q=D

The R-distance satisfies the triangular inequality such that r-dist(a,c) is less
than or equal to r-dist(a,b) + r-dist(b,c). The K-distance does not satisfy this
inequality but it does make use of weights along the edges of the semantic
network.

3.7.1.3 Incorporating Distance

Lee, et al., incorporated a distance measure using a semantic network into
the Extended Boolean Retrieval model and called it—KB-EBM for Knowledge
Base——Extended Boolean Model [Lee et al., 1993]. The idea was to take the
existing Extended Boolean Retrieval model described in Section 2.5 and mod-
ify the weights used to include a distance between two nodes in a semantic
network. ‘

The Extended Boolean model uses a function F that indicates the weight of
a term in a document. In our earlier description we simply called it w;, but
technically it could be represented as F(d, t;). Lee, et al., modified this weight
by using a semantic network and then used the rest of the Extended Boolean
model without any other changes. This cleanly handled the case of NOT.

The primitive distance function, d(t;, t;), returns the length of the shortest
path between two nodes. This indicates the conceptual closeness of the two
terms. What is needed here is the conceptual distance, which is inversely pro-
portional to the primitive distance function. Hence, the new F' function uses:

A
distance™ ! (ti, t;) = ,
istance™ (b, t;) \ + distance(ti, t;)
First, the function F is given for a document with unweighted terms. The
new function, F(d, ¢;), computes the weight of term t; in the document as the

average distance of ¢; to all other nodes in the document. The new function F'
is then:

A distance™ ! (t;, t)

Fd,t) =
(d#) = 1+5f\L—1(n—1)

For existing weights for a term in a document, F is modified to include
weights w;. This is the weight of the it* term in document d.

i distance™(ti, t)w;
1+ 2q(n—1)

F(d,t) =

138 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

3.7.1.4 Evaluation of Distance Measures

All three distance measures were evaluated on four collections with nine,
six, seven, and seven documents, respectively. Precision and recall were not
measured, so evaluations were done using comparisons of the rankings pro-
duced by each distance. In some cases MESH was used—a medical seman-
tic network—in other cases, the Computing Reviews Classification Scheme
(CRCS) was used. Overall, the small size of the test collections and the lack of
precision and recall measurements made it difficult to evaluate these measures.
They are presented here due to their ability to use semantic networks. Most
work done today is not focused on Boolean requests. However, all of these
distance measures are applicable if the natural language request is viewed as
a Boolean OR of the terms in the query. It would be interesting to test them
against a larger collection with a general semantic network such as WordNet.

3.7.2 Developing Query Term Based on “Concepts”

Instead of computing the distance between query terms and document terms
in a semantic network and incorporating that distance into the metric, the se-
mantic network can be used as a thesaurus to simply replace terms in the query
with “nearby” terms in the semantic network. Vectors of “concepts” can then
be generated to represent the query, instead of term-based vectors. This was
described in the early 1970’s. In 1988, an algorithm was given that described
a means of using this approach to improve an existing Boolean retrieval sys-
tem [Giger, 1988]. Terms in the original Boolean system were replaced with
“concepts”. These concepts were found in a semantic network that contained
links to the original terms. The paper referred to the network as a thesaurus,
but the different relationships existing between terms meet our definition of a
semantic network.

The system described in [Chen and Lynch, 1992, Chen et al., 1993] used an
automatically generated semantic network. The network was developed using
two different clustering algorithms. The first was the standard cosine al gorithm
(see Section 3.2), while the second was developed by the authors and yields
asymmetric links between nodes in the semantic net. Users were then able to
manually traverse the semantic network to obtain good terms for the query,
while the semantic nets were also used to find suitable terms to manually index
new documents.

3.7.3 Ranking Based on Constrained Spreading Activation

Two interesting papers appeared in 1987 that are frequently referenced in
discussions of knowledge-based information retrieval [Cohen and Kjeldsen,
1987, Kjeldsen and Cohen, 1987]. These papers describe the GRANT system
in which potential funding agencies are identified based on areas of research

Retrieval Utilities 139

interest. A manually built semantic network with 4,500 nodes and 700 funding
agencies was constructed with links that connect agencies and areas of interest
based on the topics agencies are interested in.

Given a topic, the links emanating from the topic are activated and spread-
ing activation begins. Activation stops when a funding agency is found. At
each step, activation is constrained. After following the first link, three con-
straints are used. The first is distance. If the path exceeds a length of four,
it is no longer followed. The second is fan-out, if a path reaches a node that
has more than four links emanating from it, it is not followed. This is because
the node that has been reached is too general to be of much use and it will
cause the search to proceed in many directions that are of little use. The third
type of constraint is a rule that results in a score for the link. The score is
considered an endorsement. Ultimately, the results are ranked based on the
accumulation of these scores. An example of one such endorsement occurs if
a researcher’s area of interest is a subtopic or specialization of a general topic
funded by the agency it gets a positive endorsement. An agency that funds
research on database systems will fund research in temporal database systems.
More formally:

request-funds-for-topic(x) and IS-A(x,y) — request-funds-for-topic(y)

A negative endorsement rule exists when the area of research interest is a
generalization of a funding agency’s areas of research. An agency that funds
database systems will probably not be interested in funding generic interest in
computer science.

A best-first search is used such that high-scoring endorsements are followed
first. The search ends when a certain threshold number of funding agencies
are identified. The GRANT system was tested operationally, and found to be
superior to a simple keyword matching system that was in use. Searches that
previously took hours could be done in minutes. More formal testing was done
with a small set of twenty-three queries. However, the semantic network and
the document collection were both relatively small so it is difficult to generalize
from these results. Overall, the GRANT system is very interesting in that it
uses a semantic network, but the network was constrained based on domain-
specific rules.

3.8 Parsing

The ability to identify a set of tokens to represent a body of text is an es-
sential feature of every information retrieval system. Simply using every token
encountered leaves a system vulnerable to fundamental semantic mismatches
between a query and a document. For instance, a query that asks for infor-
mation about computer chips matches documents that describe potato chips.
Simple single-token approaches, both manual and automatic, are described in

140 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Section 3.8.1. Although these approaches seem crude and ultimately treat text
as a bag of words, they generally are easy to implement, efficient, and often
result in as good or better effectiveness than many sophisticated approaches
measured at the Text REtrieval Conference (TREC). More discussion of TREC
is found in Chapter 9).

A step up from single-term approaches is the use of phrases in document
retrieval. Phrases capture some of the meaning behind the bag of words and
result in two-term pairs (or multi-term phrases, in the general case) so that a
query that requires information about New York will not find information about
the new Duke of York. Section 3.8.2 describes simple approaches to phrase
identification.

More sophisticated approaches to phrase identification are given in Section
3.8.3. These are based on algorithms commonly used for natural language
processing (NLP). These include part-of-speech taggers, syntax parsers, and
information extraction heuristics. We provide a brief overview of the heuris-
tics that are available and pay particular attention only to those that have been
directly incorporated into information retrieval systems. An entire book could
be written on this section as the entire field of natural language processing is
relevant.

Overall, it should be noted that parsing is critical to the performance of a
system. For complex NLP approaches, parsing is discussed in great detail, but
to date, these approaches have typically performed with no significant differ-
ence in performance than simplistic approaches. A review of some initial work
done to integrate NLP into information retrieval systems is given in [Lewis and
Sparck Jones, 1996].

3.8.1 Single Terms

The simplest approach to search documents is to require manual interven-
tion and to assign names of terms to each document. The problem is that it is
not always easy to assign keywords that distinctly represent a document. Also,
when categorizations are employed—such as the Library of Congress subject
headings—it is difficult to stay current within a domain. Needless to say, the
manual effort used to categorize documents is extremely high. Therefore, it
was learned early in the process that manually assigned tokens did not perform
significantly better than automatically assigned tokens [Salton, 1971d].

Once scanning was deemed to be a good idea in the early 1960’s, the next
step was to try to normalize text to avoid simple mismatches due to differing
prefixes, suffixes, or capitalization. Today, most information retrieval systems
convert all text to a single case so that terms that simply start a sentence do not
result in a mismatch with a query simply because they are capitalized.

Stemming refers to the normalization of terms by removing suffixes or pre-
fixes. The idea is that a user who includes the term “throw” in the query might

Retrieval Utilities 141

LI INYY

also wish to match on “throwing”, “throws”, etc. Stemming algorithms have
been developed for more than twenty years. The Porter and Lovins algorithms
are most commonly used {Porter, 1980, Lovins, 1968]. These algorithms sim-
ply remove common suffixes and prefixes. A problem is that two very different
terms might have the same stem. A stemmer that removes -ing and -ed results
in a stem of r for terms red and ring. KSTEM uses dictionaries to ensure that
any generated stem will be a valid word [Krovetz and Croft, 1989, Krovetz,
1993]. Another approach uses corpus-based statistics (essentially based on
term co-occurrence) to identify stems in a language-independent fashion [Croft
and Xu, 1994]. These stemmers were shown to result in improved relevance
ranking over more traditional stemmers.

Stop words are terms deemed relatively meaningless in terms of document
relevance and are not stored in the index. These terms represent approximately
forty percent of the document collection [Francis and Kucera, 1982]. Remov-
ing these terms reduces index construction, time and storage cost, but may also
reduce the ability to respond to some queries. A counterexample to the use
of stop word removal occurs when a query requests a phrase that only con-
tains stop words (e.g., “to be or not to be”). Nevertheless, stop word lists are
frequently used, and some research was directed solely at determining a good
stop word list [Fox, 1990].

Finally, we find that other parsing rules are employed to handle special char-
acters. Questions arise such as what to do with special characters like hyphens,
apostrophes, commas, etc. Some initial rules for these questions are given in
[Adams, 1991], but the effect on precision and recall is not discussed. Many
TREC papers talk about cleaning up their parser and the authors confess to
having seen their own precision and recall results improved by very simple
parsing changes. However, we are unaware of a detailed study on single-term
parsing and the treatment of special characters, and its related effect on preci-
sion and recall.

3.8.2 Simple Phrases

Many TREC systems identify phrases as any pair of terms that are not sep-
arated by a stop term, punctuation mark, or special character. Subsequently,
infrequently occurring phrases are not stored. In many TREC systems, phrases
occurring fewer than 25 times are removed. This dramatically reduces the
number of phrases which decreases memory requirements. [Ballerini et al.,
1996].

Once phrases are employed, the question as to how they should be incorpo-
rated into the relevance ranking arises. Some systems simply add them to the
query, while others do not add them to the query but do not include them in the
computation of the document length normalization [Buckley et al., 1995]. The
reason for this is that the terms were already being considered. Tests using just

142 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

phrases or terms were performed on many systems. It was found that phrases
should be used to augment, not replace the terms. Hence, a query for New York
should be modified to search for new, york, and New York. Phrases used in
this fashion are generally accepted to yield about a ten percent improvement in
precision and recall over simple terms.

3.8.3 Complex Phrases

The quest to employ NLP to answer a user query was undertaken since
the early 1960’s. In fact, NLP systems were often seen as diametrically op-
posed to information retrieval systems because the NLP systems were trying
to understand a document by building a canonical structure that represents the
document. The goal behind the canonical structure is to reduce the inherent
ambiguity found in language. A query that asks for information about walk-
ing should match documents that describe people who are moving slowly by
gradually placing one foot in front of the other.

A NLP system stores information about walking and moving slowly with
the exact same canonical structure—it does this by first parsing the document
syntactically—identifying the key elements of the document (subject, verb,
object, etc.) and then building a single structure for the document. Simple
primitives that encompass large categories of verbs were proposed [Schank,
1975] such as PTRANS (physically transport), in which John drove to work
and John used his car to get to work both result in the same simple structure
John PTRANS work.

Progress in NLP has occurred, but the reality is that many problems in
knowledge representation make it extremely difficult to actually build the nec-
essary canonical structures. The CYC project has spent the last fifteen years
hand-building a knowledge base and has encountered substantial difficulty in
identifying the exact means of representing the knowledge found in text [Lenat
and Guha, 1989].

A side effect of full-scale NLP systems is that many tools that do not work
perfectly for full language understanding are becoming quite usable for infor-
mation retrieval systems. We may not be able to build a perfect knowledge
representation of a document, but by using the same part-of-speech tagger and
syntactic parser that might be used by an NLP system, we can develop several
algorithms to identify key phrases in documents.

3.8.3.1 Use of POS and Word Sense Tagging

Part-of-speech taggers are based on either statistical or rule-based methods.
:oal is to take a section of text and identify the parts of speech for each

One approach incorporates a pretagged corpus to identify two measures:

the frequency a given term is assigned a particular tag and the frequency with
which different tag sequences occur [Church, 1988]. For example, duck might

Retrieval Utilities 143

appear as a noun (creature that swims in ponds) eighty percent of a time and
a verb (to get out of the way of a ball thrown at your head) twenty percent of
the time. Additionally, “noun noun verb” may occur ten percent of the time
while “noun noun noun” may occur thirty percent of the time. Using these two
lists (generated based on a pretagged training corpus) a dynamic programming
algorithm can be obtained to optimize the assignment of a tag to a token for
a given step. DeRose improved on Church’s initial tagger in [DeRose, 1988].
Rule-based taggers in which tags are assigned based on the firing of sequences
of rules are described in [Brill, 1992].

Part-of-speech taggers can be used to identify phrases. One use is to identify
- all sequences of nouns such as Virginia Beach or sequences of adjectives fol-
lowed by nouns such as big red truck [Allan et al., 1995, Broglio et al., 1994].
Another use of a tagger is to modify processing such that a match of a term in
the query only occurs if it matches the same part-of-speech found in the doc-
ument. In this fashion, duck as a verb does not match a reference to duck as a
noun. Although this seems sensible, it has not been shown to be particularly
effective. One reason is that words such as bark have many different senses
within a part of speech. In the sentences A dog’s bark is often stronger than
its bite and Here is a nice piece of tree bark, bark is a noun in both cases with
very different word senses. Some initial development of word sense taggers
exists [Krovetz, 1993). This work identifies word senses by using a dictionary-
based stemmer. Recent work on sense disambiguation for acronyms is found
in [Zahariev, 2004].

3.8.3.2 Syntactic Parsing

As we move along the continuum of increasingly more complex NLP tools,
we now discuss syntactic parsing. These tools attempt to identify the key syn-
tactic components of a sentence, such as subject, verb, object, etc. For simple
sentences the problem is not so hard. Whales eat fish has the simple subject of
Whales, the verb of eat, and the object of fish. Typically, parsers work by first
invoking a part-of-speech tagger.

Subsequently, a couple of different approaches are employed. One method
is to apply a grammar. The first attempt at parsers used augmented transition
networks (ATNSs) that were essentially non-deterministic finite state automata
in which: subject-verb-object would be a sequence of states. The problem is,
that for complex sentences, many different paths occur through the automata.
Also, some sentences recursively start the whole finite state automata (FSA),
in that they contain structures that have all the individual components of a
sentence. Relative clauses that occur in sentences such as Mary, who is a nice
girl that plays on the tennis team, likes seafood. Here, the main structure
of Mary likes seafood also has a substructure of Mary plays tennis. After

144 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

ATNs, rule-based approaches that attempt to parse based on firing rules, were
attempted.

Other parsing algorithms, such as the Word Usage Parser (WUP) by Gomez,
use a dictionary lookup for each word, and each word generates a specialized
sequence of states [Gomez, 1988]. In other words, the ATN is dynamically
generated based on individual word occurrences. Although this is much faster
than an ATN, it requires substantial manual intervention to build the dictionary
of word usages. Some parsers such as the Apple Pie Parser, are based on
light parsing in which rules are followed to quickly scan for key elements of a
sentence, but more complex sentences are not fully parsed.

Once the parse is obtained, an information retrieval system makes use of
the component structures. A simple use of a parser is to use the various com-
ponent phrases such as SUBJECT or OBJECT as the only components of a
query and match them against the document. Phrases generated in this fash-
ion match many variations found in English. A query with American Presi-
dent will match phrases that include President of America, president who is
in charge of America, etc. One effort that identified head-modifier pairs (e.g.,
“America+president”) was evaluated against a patent collection and demon-
strated as much as a sixteen percent improvement in average precision [Os-
born et al., 1997]. On the TREC-5 dataset, separate indexes based on stems,
simple phrases (essentially adjective-noun pairs or noun-noun pairs), head-
modifier pairs, and people name’s were all separately indexed [Strzalkowski
et al,, 1997]. These streams were then combined and a twenty percent im-
provement in average precision was observed.

To date, this work has not resulted in substantial improvements in effec-
tiveness, although it dramatically increases the run-time performance of the
system.

3.8.3.3 Information Extraction

The Message Understanding Conference (MUC) focuses on information
extraction—the problem of finding various structured data within an unstruc-
tured document. Identification of people’s names, places, amounts, etc. is
the essential problem found in MUC, and numerous algorithms that attempt
to solve this problem exist. Again, these are either rule-based or statistical al-
gorithms. The first step in many of these algorithms is to generate a syntactic
parse of the sentence, or at the very least, generate a part-of-speech tag. De-
tails of these algorithms are found in the MUC Proceedings. More recently
the Special Interest Group on Natural Language Learning of the Association
for Computational Linguistics (CONLL-2003) held a shared task on Language-
Independent Named Entity Recognition. All of the proceedings may be found
at http://cnts.uia.ac.be/signll/conlLhtml. In this task, language independent

Retrieval Utilities 145

algorithms were used to process standard test collections in English and Ger-
man. We discuss these in more detail in Section 4.4.5.

Named entity taggers identify people names, organizations, and locations.
We present a brief example that we created with a rule-based extractor from
BBN Corporation to obtain this new document. This extractor works by using
hundreds of hand-crafted rules that use surrounding terms to identify when a
term should be extracted. First, we show the pre-extracted text—a paragraph
about the guitarist Allen Collins.

<TEXT>

Collins began his rise to success as the lightning-fingered guitarist for the Jacksonville band
formed in 1966 by a group of high school students. The band enjoyed national fame in the
1970’s with such hits as "Free Bird," "Gimme Three Steps,” "Saturday Night Special” and Ron-
nie Van Zant’s feisty "Sweet Home Alabama."

</TEXT>

The following output is generated by the extractor. Tags such as PERSON
and LOCATION are now marked.

<TEXT>

<ENAMEX TYPE="PERSON">Collins</ENAMEX> began his rise to success as the lightning-
fingered guitarist for the <ENAMEX TYPE="LOCATION">Jacksonville</ENAMEX> band
formed in <TIMEX TYPE="DATE">1966</TIMEX> by a group of high school students. The
band enjoyed national fame in the <TIMEX TYPE="DATE">1970s </TIMEX> with such hits
as "Free <ENAMEX TYPE="PERSON"> Bird </ENAMEX>," "Gimme Three Steps," "Satur-
day Night Special” and <ENAMEX TYPE="PERSON">Ronnie Van Zant</ENAMEX>’s feisty
"Sweet Home <ENAMEX TYPE="LOCATION">Alabama</ENAMEX>."

</TEXT>

In this example, and in many we have hand-checked, the extractor performs
well. Many extractors are now performing at much higher levels of precision
and recall than those of the early 1990’s [Sundheim, 1995]. However, they are
not perfect. Notice the label of PERSON being assigned to the term “Bird” in
the phrase “Free Bird.” .

Using extracted data makes it possible for a user to be shown a list of all per-
son names, locations, and organizations that appear in the document collection.
These could be used as suggested query terms for a user.

The simplest use of an extractor is to recognize key phrases in the docu-
ments. An information retrieval system could incorporate extraction by in-
creasing term weights for extracted terms. Given that extractors are only re-
cently running fast enough to even consider using for large volumes of text,
research in the area of using extractors for information retrieval is in its in-
fancy.

146 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

3.9 Summary

We described eight utilities, emphasizing that each of these utilities, both
independently and in combination with each other can be integrated with any
strategy. Most of these utilities address the term-mismatch problem, namely, a
document can be highly relevant without having many terms that syntactically
match those terms specified in the query. The relevance feedback, thesaurus,
and semantic network strategies directly address this problem as they attempt
to find related terms that do match the document and the query. Parsing and
N-grams avoid mismatches by using fragments of terms instead of the actual
terms. Fragmentation can avoid mismatches that can occur due to spelling
errors or the loss or addition of a common prefix or suffix.

Passages attempt to focus on only the relevant part of a document. Thus,
mismatching terms from spurious parts of the document are ignored and do not
significantly reduce the similarity coefficient. Clustering algorithms also at-
tempt to focus a user search onto only a relevant cluster of documents, thereby
avoiding irrelevant documents.

Regression analysis estimates coefficients for a similarity measure based on
a history of relevant documents. Although this does require prior relevance
information, it offers an opportunity to fine tune different retrieval strategies.

Which utility is most important? Perhaps a more interesting question is:
Which utility or combination of utilities work best with a given strategy? The
answer to either of these questions is unclear. Relevance feedback is an ac-
cepted part of most systems participating in the TREC activities. Document
clustering has exceeded most computational resources, and thus, is not used
widely. Thesauri and semantic networks have yet to show dramatic improve-
ments over a baseline comparison. Parsing plays a critical role in all informa-
tion retrieval systems with much work done on various stemmers. N-grams are
not as commonly used because they require substantial growth in an inverted
index, but they do offer resilience to spelling errors.

The bottom line is that more testing is needed to identify which utility works
best with a given strategy, and which measurements are needed to identify the
extent to which a given utility improves effectiveness.

3.10 Exercises

1 Using the text from Alice in Wonderland, write some code that will use a
trivial strategy for ranking documents. For a query with i matching terms,
assign a similarity measure of ¢ for a given document (for simplicity define
a document as ten lines of the book). Implement automatic relevance feed-
back using this strategy to suggest ten new terms for a given query. Use idf
as your new term sort order.

Retrieval Utilities 147

= Identify a query where five out of the ten terms are “good” in that they
directly relate to the query.

= Identify a query where five of the terms are “bad”.

2 Develop an example with a retrieval strategy of your choice and show how
a modification to the parser will result in fundamentally different results
(the document ranking will be different).

3 Implement an automatic thesaurus generation algorithm for the term teacup
in the book. Give the top three terms most related to this term.

4 Give ten examples where stemming will do what a user would like it to do.
Give ten terms where stemming will not do that a user would like.

5 One idea to improve effectiveness of an information retrieval system is to
match on both the term and the sense of the term. The idea is that for a query
of the term duck as noun, a document containing “She tried to duck to avoid
the ball thrown at her.” would not match. Implement five queries with your
favorite Web search engine, and for each query identify a document that
could have been avoided using this heuristic.

Chapter 4

CROSS-LANGUAGE INFORMATION RETRIEVAL

Cross-Language Information Retrieval (CLIR) is quickly becoming a ma-
ture area in the information retrieval world. The goal is to allow a user to issue
a query in language L and have that query retrieve documents in language L'
(see Figure 4.1). The idea is that the user wants to issue a single query against
a document collection that contains documents in a myriad of languages. An
implicit assumption is that the user understands results obtained in multiple
languages. If this is not the case, it is necessary for the retrieval system to trans-
late the selected foreign language documents into a language that the user can
understand. Surveys of cross-language information retrieval techniques and
multilingual processing include [Oard and Diekema, 1998, Haddouti, 1999].

4.1 Introduction

The key difference between CLIR and monolingual information retrieval is
that the query and the documents cannot be matched directly. In addition to
the inherent difficulty in matching the inherent style, tone, word usage, and
other features of the query with that of the document, we must now Cross the
language barrier between the query and the document. Section 4.2 focuses
on the core problems involved in crossing the language barrier. Section 4.3
describes cross-language retrieval strategies and Section 4.4 discusses Cross-
language utilities.

4.1.1 Resources

Numerous resources are needed to implement cross-language retrieval sys-
tems. Most approaches use bilingual term lists, term dictionaries, a comparable
corpus or a parallel corpus.

150 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

A comparable corpus is a collection of documents in language L and an-
other collection about the same topic in language L’. The key here is that the
documents happen to have been written in different languages, but the docu-
ments are not literal translations of each other. A news article in language L
by a newspaper in a country which speaks language L and an article in lan-
guage L' by a newspaper in a country which speaks language L' is an example
of comparable documents. The two newspapers wrote their own article; they
did not translate an article in one language into another language. Another key
with comparable corpora are that they must be about the same topic. A book in
French on medicine and a book in Spanish on law are not comparable. If both
books are about medicine or about law they are comparable. We will discuss
CLIR techniques using a comparable corpus in Section 4.3.3.

A parallel corpus provides documents in one language L that are then direct
translations of language L’ or vice versa. The key is that each document is in
language L is a direct translation of a corresponding document in language
L. Hence, it is possible to align a parallel corpus at the document level, the
paragraph level, the sentence level, the phrase level, or even the individual term
level. Legislative documents in countries or organizations that are required to
publish their proceedings in at least two languages are a common source of
parallel corpora. In general, a parallel corpus will be most useful if it is used to
implement cross-language retrieval of documents that are in a similar domain
to the parallel corpus. Recent work shows that significant effectiveness can be
obtained if the correct domain is selected [Rogati and Yang, 2004]. We discuss
parallel corpus CLIR techniques in Section 4.3.2.1.

We also note that even within a single language such as Arabic, there are
many different character sets (four are commonly used with Arabic). Language
processing resources exist to not only detect a language but also to detect a
character set. Cross-language systems often struggle with intricacies involved
in working with different character sets within a single language. Unicode
(www.unicode.org) was developed to map the character representation for nu-
merous scripts into a single character set, but not all electronic documents are
currently stored in Unicode.

4.1.2 Evaluation

Different measures are used to evaluate the performance of cross-language
information retrieval systems. The most obvious is simply to compute the
average precision of the cross-language query.

Another approach is to compute the percentage of monolingual performance.
This can occasionally be misleading because the techniques used to achieve
a given monolingual performance may be quite different than those used for
cross-language performance. Straightforward techniques typically result in
50% of monolingual performance, but the CLIR literature contains results that

Cross-Language Information Retrieval 151

exceed 100% because of the inherent query expansion that occurs when doing
a translation [Levow et al., 2004].

We note that queries with relevance judgements exist in Arabic, Chinese,
Dutch, Finnish, French, German, Italian, Japanese, Korean, Swedish and Span-
ish. These have been used at various evaluations at TREC (Text REtrieval
Conference, see trec.nist.gov), CLEF (Cross-Language Evaluation Forum see
clef.iei.pi.cnr.it), and NTCIR (see research.nii.ac.jp/ntcir).

42 Crossing the Language Barrier

To cross the language barrier, we must answer four core questions [Oard,
2004]:

= What should be translated? Either the queries may be translated, the doc-
uments, or both queries and documents may be translated to some internal
representation. Query translation is depicted in Figure 4.1). Section 4.2.1
describes query translation approaches. Document translation is shown in
Figure 4.2). Section 4.2.2 describes document translation. Finally, we may
obtain an internal representation of both the query and the document.

s Which tokens should be used todo a translation (e.g.; stems, words, phrases,
etc.)? Phrase translation is described in Section 4.2.3.

= How should we use a translation? In other words, a single term in language
L may map to several terms in Language L/. We may use one of these terms,
some of these terms, or all of these terms. Additionally, we might weight
some terms higher than other terms if we have reason to believe that one
translation is more likely than another. Various approaches are described in
described in Section 4.2.4.

s How can we remove spurious translations? Typically, there are spurious
translations that can lead to poor retrieval. Techniques exist to remove these
translations. Pruning translations is described in Section 4.2.5.

We describe several query translation approaches in Section 4.2.1. Trans-
lating all of the documents into the language of the query is an arduous task if
a complex machine translation system that does full natural language process-
ing is used (lighter translation approaches are certainly viable, but intuitively
appear to be less effective).

As with monolingual retrieval, various strategies and utilities exist for cross-
language retrieval. As with the monolingual retrieval we organize the chapter
according to strategies and utilities. Again, a strategy will take a query in lan-
guage L and identify a measure of similarity between the query and documents
in the target language L’. A utility enhances the work of any strategy. The core

152 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Figure 4.1. Translate the Query

Document

S Collection
-L Query (Language L’)
— .(Language L)

-

"

y
Translated query
(Language L')

L .

Yivieic']/

s)le]] =]

Results

—

strategies: query translation, document translation, and use of internal repre-
sentaiion are the focus of Sections 4.2.1, 4.2.2, and 4.3.2. Utilities such as
n-grams, stemming, and entity tagging are described in Section 4.4.

4.2.1 Query Translation

Initial work in query translation was done in the early 1970’s where user
specified keywords were used to represent documents and a dictionary was
used to translate English keywords to German keywords [Salton, 1970a]. Query
translation approaches use machine translation, language specific stemmers,
dictionaries, thesauri, and automatically generated bilingual term lists to im-
plement the necessary translation of the user query in language L to the target
query language L'.

An excellent discussion of dictionary-based query translation techniques is
given in [Levow et al., 2004]. In this work, a methodical study of various
techniques is presented and effectiveness of specific techniques are measured.

4.2.2 Document Translation

A simple way to “translate” documents is to use any of the query translation
approaches that we have already discussed. For example, one or more bilingual

Cross-Language Information Retrieval 153

Figure 4.2. Translate the Documents

Translated Document
Documents Collection
t- Query (Language L) (Language L)
B e (Language L)
4 |
Dy 11* O ‘
Search Dy fedt> D,
Dy ¢ Dy
Results K_j/—\

term lists may be used to “translate” a document from language L into language
L.

Since the documents contain natural language text, it is also possible to
run machine translation algorithms to translate from language L to language
L'. Although machine translation algorithms are not perfect, they have been
used as a foundation for CLIR. An advantage of these algorithms is that the
use of the full natural language text provides more evidence when selecting a
potential translation.

4.2.3 Phrase Translation

Instead of simply using terms for translation, phrase-based approaches were
shown to yield substantial improvement. Simply manually translating phrases
instead of a term based translation was shown to yield improvement in {Hull
and Grefenstette, 1996]. A bilingual phrase list extracted from a parallel text
was used in [Davis and Ogden, 1997]. We discuss extraction of bilingual term
lists from training texts in Section 4.3.2. Phrase translation using the Collins
machine readable dictionary was described in [Ballesteros and Croft, 1997].
A core problem with any phrase translation approach is that there is far more

154 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

likelihood that a phrase will not be found in a bilingual list used for translation
than a single term.

4.24 Choosing Translations

Once a bilingual term list or term lists are in place, the next challenge is
to choose the appropriate translation. We have discussed dictionary coverage
issues associated with query translation. We now focus on the choice of trans-
lations and the need to form these translations into a new query for the target
language.

There are four different approaches: unbalanced, structured queries, bal-
anced, and the use of a pivot language.

4.24.1 Quality of Bilingual Term Lists

Like their monolingual counterparts, most cross-language systems use a va-
riety of techniques to improve accuracy. At the core of these systems are bilin-
gual lexicens. A survey of these approaches is given in [Pirkola et al., 2001].
A lexicon is used to map a source term in language L to a myriad of terms in
language L’. Key problems with the lexicon are ambiguities, incomplete cover-
age of the vocabulary, and the lack of even the existence of a machine-readable
source.

Given that word sense disambiguation is very difficult with the short length
and lack of context found in a typical query, multiple word senses for a single
term result in numerous translations. Consider a query with the term duck
in English. This term can be translated to many different terms in a target
language because there is more than one meaning to the word. Duck can be
defined as a type of bird that floats on lakes or it can be a command to move out
of the way. The challenge of cross-language systems is to reduce the ambiguity
created by a translated query in the target language that has numerous terms
that have nothing to do with the query.

Experiments which focus on measuring the effect of coverage of a dictio-
nary on effectiveness are found in [Demner-Fushman and Oard, 2003]. In this
work, a set of 113,000 documents was used with thirty-three queries. Thirty-
five different bilingual dictionaries were tested. In each case, the original En-
glish query was filtered based on the bilingual dictionary. Only terms found in
the dictionary were used. For each dictionary, the average precision was com-
puted based on the ability of that dictionary to filter a query. The idea is that
a perfect dictionary would not filter at all. It was discovered that dictionary
size linearly increases accuracy when a dictionary contains between 3,000 and
20,000 terms. After that, mean average precision does not increase.

Another key set of experiments on lexicon coverage is given in [McNamee
and Mayfield, 2002a). For a fixed translation resource, they gradually re-
duce the number of translations found in the resource by randomly eliminat-

Cross-Language Information Retrieval 155

ing some terms that are translated. This was done for five languages: Dutch,
English, French, German, Italian, and Spanish. They find, what one would
intuitively expect, performance degrades as lexical coverage degrades. (see
Section 4.4.1).

42.4.2 Unbalanced

This is the most naive form of using a bilingual term list. For a given word t
in language L all terms in language [/ that are valid translations of ¢ are used.
The problem with this is that a query term that is general may have numerous
translations and they are all added to the query. Meanwhile a query term that
is very specific may only have one translation and hence it may well be given
less weight than the more general term — this is precisely the opposite of what
would be preferred — increased weighting of more specific search terms.

4.2.43 Balanced Queries

Here, a term t is translated into multiple terms and these terms are assigned
a weight that is then averaged across all translations for the term. Hence, a
general term with multiple translations will result in all of the translated terms
having a lower weight than a very specific translation to only a single term. The
weight is a combination of the term frequency (tf), the document frequency
(df) and the document length.

More formally, assume we have a weight w;; for a term t; in document
Dj. As usual, the term frequency t f;; of the this term indicates the number of
occurrences of term i in document j. Let | D, indicate the length of document
j. Let df; equal the number of documents in the collection that contain term
i. Our weight w;; will be computed with a function that combines the tf,
the df and the size of the document |D|. We have discussed both normalized
cosine measures (see Section 2.1.2) and probabilistic measures (see Section
2.2). These measures may be thought of as term weighting functions that are
increasing in t f;;, decreasing in df; and decreasing in |Djl.

To compute the weight of query term gi in language L. Assume we have
k translations of term g; in language L'. For each of these translations t;, we
can compute the tf;; and |D}| for each document in language L'. Similarly,
we can compute the collection frequency, df; in language L'. From these we
can compute the weight w; for each of the translations in language L. To
compute the weight of our initial query term in language L we simply average
the corresponding translations as:

k
_ 2i=1 w§
k

Balanced queries are described in more detail in [Leek et al., 2000, Levow and
Oard, 2000].

qi

156 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

4.244 Structured Queries

For structured queries, the overall term frequency for a term in a document
is computed as the sum of all of the term frequencies for all of the transla-
tions. Similarly, the corresponding document frequencies for all translations
of a query term are combined as well. Assume we again have k translations
for query term g;:

k k
thi=2 tf; dfi=Y df'
=]

i=1

These modified term and document weights are then used to compute w;.
Any translation for a give term contributes to the document frequency of that
term. Structured queries are described in more detail in [Pirkola, 1998]. A
recent study compared these approaches and found that structured queries sig-
nificantly outperformed balanced and unbalanced queries [Levow et al., 2004].

4.2.4.5 Pivot Language

There are cases when a translation dictionary from language L to L' is not
be available. In these cases, a pivot language P can be used to translate from L
to P and then from P to L’. This is sometimes referred to as transitive transla-
tion. An initial discussion with research results is found in [Ballesteros, 2001].
Here, the use of a pivot language was shown to degrade performance by 91%
over a direct bilingual translation. This initial degradation was overcome with
relevance feedback techniques (see Section 4.4.1).

An approach which uses two different pivot languages is given in [Gollins
and Sanderson, 2004]. In this work, translating from German to English is
done via two routes. First, translations are obtained by translating from Ger-
man to Spanish and then to English. Next, these are combined with those from
German to Dutch to English. The idea is that ranslations lost in converting
from German to Spanish are improved with those from German to Dutch. Ef-
fectiveness was improved when only the terms in the target language that were
obtained via all translation routes were used. '

For example, consider a query with terms ¢; and t, and assume that one
translation route resulted in translations €1, €2, e3 and another route obtained €
and ¢.4. The only common term, e, would be used against the target language.
The remaining terms, €1, €3, €4, would be removed as potentially erroneous
translations. More recent results with the use of a pivot language are found in
[Kishida and Kando, 2003].

Cross-Language Information Retrieval 157

4.2.5 Pruning Translations

Once translations are identified, it 1s often necessary to prune the list of
translations for a given phrase. Instead of using all translations, only candidate
translations that tend to co-occur are used in [Adriani, 2000].

Recently, work done with bidirectional English-Arabic dictionaries showed
that performance improves only when translations, ¢, are used in which a term
s is translated to ¢ and then back to s using a bidirectional English-Arabic
dictionary [Aljlayl et al., 2002].

The use of HMM’s to compute a most likely query translation was shown
in [Federico and Bertoldi, 2002]. The most probable translation is used and
the result is combined with a more traditional language model (as we just de-
scribed in Section 4.3.1). The work also used an applied linear smoothing
technique as opposed to smoothing approaches described in Section 2.3.2. The
authors suggest that their approach is superior to the similarity measure given
in Equation 4.1, but we are unaware of any direct comparisons. The authors
experimented with using different numbers of query translations. They found,
in many cases, a single high quality translation of the query outperformed a
variety of translations.

4.3 Cross-Language Retrieval Strategies

Cross-language retrieval strategies develop a similarity measure for a query
in language L against documents in Language L/. Section 4.3.1 describes the
use of Language Models for CLIR.

4.3.1 Language Models for CLIR

A language modeling (see Section 2.3) approach may be used for cross-
language retrieval. To briefly review, a simple monolingual language model
will compute the likelihood of generating a query given a document.

Q
p(glDi € R) = [] aP(41C) + (1 — &) P(t;| D)
Jj=1

Given a query (t1,12,...,tj,...,tq) where t; is a query term; « is estimated

using an EM (Expectation Maximization) algorithm [Dempster et al., 1977},

and C is the document collection. While formulated as a Hidden Markov -

Model (HMM), the retrieval method is essentially similar to using the multino-

mial language model with linear interpolation smoothing (see Section 2.3.2). A

good overview on Hidden Markov Models may be found in [Rabbiner, 1989].
The remaining probabilities are computed as:

_ g

158 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

where f; is the frequency or number of occurrences of term j in the document
collection.

th

where tf;; is the term frequency or number of occurrences of term j in doc-
ument i. For cross-language retrieval, the model is extended so a document
written in language L generates a query in language L' [Xu and Weischedel,
1999]. The notation ¢, is used to refer to a term in language L and ¢/ is used
to represent a term in language L'. Similarly, Dy, refers to the document 7 in
language L and D refers to document ¢ in language L’'. Hence, we need to
compute: '

Q
P(quDL; €R)= H aP(tLJ.ch) +(1- a)P(tleDL;) “.1)
j=1

We now compute the probability that a query in language L will be generated
with a document in language L’. All of the probabilities can be computed
with no change except for P(tr,|Dy/). This probability can be computed
with a term dictionary that will enable us to compute a translation probabil-

ity: P(tL,ttL;c)-

[Dy]

P(tr|Dy) = > Pty |Dr) P(tr,lte) (4.2)
k=1

where the first term is the ratio of our translated query terms to the size of the
document retrieved.

tfu;

P(t|Dp) = Do

The next term uses the actual translations in the lexicon. The probability
P(tL,|t L,) is the translation probability that given a term in language L’ there
will be a term in language L. For simplicity, one might assign these proba-
bilities as equally likely so that if a term in language L has five translations
in language L' we might assign them each a probability of 0.2. However,
this framework allows for the development of other algorithms to estimate the
translation probability [Brown et al., 1993]. If a parallel corpus exists (see
Section 4.3.2.1) that corpus can be used to estimate the translation probability.
A linear combination of three different sources for estimating this probability
(e.g; two dictionaries and a bilingual term list generated from a parallel corpus)
was used in [Xu et al., 2001].

Cross-Language Information Retrieval

159

Table 4.1. Raw Term Frequency for English Collection
tfeq | a | arrived | damaged | delivery | fire [gold | in | of | shipment | silver | truck
De, |1 0 1 0 1 1 1 1 1 0 0
D, |1 1 0 1 0] 0 |11 0 2 1
Des | 1 1 0 0 0] 1 |1]1 1 0 1
Table 4.2. Raw Term Frequency for Spanish Collection
tfe 4 | camion | dand | de | del | el | en | entrega | envio | fuego | la | liegd | oro | plata | un
D,, 0 1 0] 1]1]1 0 1 1 0 0 1 0 1
D, - 1 0 20011 1 0 0 2 1 0 2 1
D,, 1 0o [o] 1 1]l 0 1 0 |0 1] 0 1
Table 4.3. P(t|C.) for All Terms in the English Collection
a | arrived | damaged | delivery | fire | gold | in | of | shipment | silver | truck
3 Z L L I T Z 1213 Z A Z
22 2 2 2. 22 1 22 1221322 pl T 22 23
43.1.1 Example

Returning to our example from Chapter 2, we show how this approach can
be used to compute a measure of relevance for our English query: “gold silver
truck” and our three test documents in Spanish. All translation probabilities
were derived from the use of two online bilingual English-Spanish dictionar-

1€8.

Document Collection:

De, : “Shipment of gold damaged in a fire.”
D, : “Delivery of silver arrived in a silver truck.”
De, : “Shipment of gold arrived in a truck.”

s, - El envzo del oro dané en un fuego

D
Dy, : La entrega de la plata llegd en un camién de plata
D, : El envio del oro llegé en un camidn

To find the document in the Spanish collection that is most relevant to the En-
glish query “gold silver truck"”, we need to find the translation ratios of “gold”,

160 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Table 4.4. P(t|C,) for All Terms in the Spanish Collection

camién | daitd | de | del| el | en [entrega | envio | fuego| la |llegd | oro | plata| un
Z T TZTZTZ12 L Z I TZT Z1Z1T Z2 12
27 27 1271271271271 327 27 27 1271 27 1271 27 127
Table 4.5, Term Frequency tor Spanish Collection
1]y 4 jcamion | dand | de | deljcijen |ertrega|envio | fuego | la jliegd | oro | plata un !
17 i T 1] 2 ; : 1 i 1
AL L Lpiys 1 11 1
D, ¢ M EE u - g 010 1519 13
ZEN e 210 ALy 0 {2 L Z L
D., il O it 01045 oo ¢ O Iy 0%li
Bl_‘ 1 Iyl oL 1 1 1
s 8 R EREEE 0 | B 0101 58]0 s

Table 4.6. Translation Probabilities: P(tL; | tLl)

camion | daid | de | del | el | en | entrega | envio | fuego | la | llegd | oro | plata | un
gold| 7 0 [oJoJojo] 0 0 0 J[ofoJt] 3 10
sitver[5 0 [o]Jojojo] © 0 o Jof o %[1 10
truck | 3 0 [0jO0]0jO} O 0 0o o] o 3] ¥ |0

“silver”, and “truck”. Using Equation 4.2 we obtain the probability of a query
term appearing in a document from the Spanish collection.

P(gold | Ds,) =
P(EL| Ds,) - P(gold | El) + P(envio | Ds,) - P(gold | envio)+
P(del | Dg,) - P(gold | del) + P(oro | Ds,) - P(gold | oro)+
P(dané | Ds,) - P(gold | dand) + P(en | Dy,) - P(gold | en)+
P(}mlk Dsll) - P(gold | un) + P(fuego | Ds,) - P(gold | fuego)

— 8 1 8

P(gold |Ds,) =
P(La | Ds,) - P(gold | La) + P(entrega | Dg,) - P(gold | entrega)+
P(de | Ds,) - P(gold | de) + P(la | Ds,) - P(gold | la)+
P(plata | Ds,) - P(gold | plata) + P(llegé | Dy,) - P(gold | llegd)+
P(en | Dg,) - P(goid | en) + P(un | Ds,) - P(gold | un)+
P(camion | Ds,) - P(gold | camion)
=0

Cross-Language Information Retrieval 161

P(gold | Dg,) =
P(El| Ds,) - P(gold | El) + P(envio | Ds,) - P(gold | envio)+
P(del | Dg,) - P(gold | del) + P(oro | Ds,) - P(gold | oro)+
P(llego | Ds,) - P(gold | llegd) + P(en | Dg,) - P(gold | en)+
P(un | Dy,) - P(gold | un) + P(camién | Ds,) - P(gold | camion)
1

1

OO0 —

P(silver | Dy,) =
P(El| Ds,) - P(silver | El) + P(envio | Ds,) - P(silver | envio)+
P(del | Ds,) - P(silver | del) + P(oro | Ds,) - P(silver | oro)+
P(dané | Ds,) - P(silver | danid) + P(en | Ds,) - P(silver | en)+
P(un | D)) - P(silver | un) + P(fuego | Ds,) - P(silver | fuego)
=0

P(silver | Dg,) =
P(La | Ds,) - P(silver | La) + P(entrega | Ds,) - P(silver | entrega)+
P(de | Ds,) - P(silver | de) + P(la | Ds,) - P(silver | la)+
P(plata | Ds,) - P(silver | plata) + P(llegé | Ds,) - P(silver | llegd)+
P(en | Dy,) - P(silver | en) + P(un | Ds,) - P(silver | un)+

P(camién | Ds,) - P(silver | camién)
— 2.1

=yl
=11

P(silver | Dg,) =

P(ELl| Ds,) - P(silver | El) + P(envio | D) - P(silver | envio)+
P(del | Ds,) - P(silver | del) + P(oro | Ds,) - P(silver | oro)+
(llegé | Dy,) - P(silver | llegd) + P(en | Ds,) - P(silver | en)+
(un | Dy,) - P(silver | un) + P(camién | Dy,) - P(silver | camién)

II"U"U

P(truck | Dg,) =

P(EL| Ds,) - P(truck | El) + P(envio | Dy,) - P(truck | envio)+
P(del | Dy,) - P(truck | del) + P(oro | Ds,) - P(truck | oro)+
(dané | Ds,) - P(truck | dand) + P(en | Dy,) - P(truck | en)+
(

P
P(un | Dy,) - P(truck | un) + P(fuego | Ds,) - P(truck | fuego)

162 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

P(truck | Ds,) =
P(La | Ds,) - P(truck | La) + P(entrega | Ds,) - P(truck | entrega)+
P(de | Ds,) - P(truck | de) + P(la | Ds,) - P(truck | la)+
P(plata | Ds,) - P(truck | plata) + P(llegé | Ds,) - P(truck | llegd)+
P(en | Ds,) - P(truck | en) + P(un | Dy,) - P(truck | un)+
P(camién | Ds,) - P(truck | camién)

1

=1.1
U2
=2

P(truck | Ds,) =
P(El| Dy,) - P(truck | El) + P(envio | Ds,) - P(truck | envio)+
P(del | Ds,) - P(truck | del) + P(oro | Ds,) - P(truck | oro)+
P(llegé | Ds,) - P(truck | llegdé) + P(en | Dg,) - P(truck | en)+

P(un | Dg,) - P(truck | un) + P(camion | Ds,) - P(truck | camion)
1
"2

-

Now we apply Equation 4.1 to find the probability of the query appearing in
each Spanish document. Here o = 0.3.

P(gold, silver,truck | Ds,) =
[(0.3)P(gold | Ce) + (1 — 0.3)P(gold | Dy,)] x
[(0.3)P(silver | Ce) + (1 — 0.3)P(silver | Ds,)] X
[(0.3)P(truck | Ce) + (1 — 0.3)P(truck | Ds,)]
=(03-5+0.7-3)(03-%+0.7-0)(0.3- % +0.7-0)
= 0.0000854

P(gold, silver,truck | Ds,) =
[(0.3)P(gold | Ce) + (1 — 0.3)P(gold | Ds,)] x
[(0.3) P(silver | Ce) + (1 — 0.3)P(silver | Ds,)] %
[(0.3) P(truck | Ce) + (1 — 0.3) P(truck | Ds,)]
=(03-2+0.7-0)(03-%+0.7-3)(03-5+0.735)
= 0.0002491

P(gold, silver,truck | Ds,) =
[(0.3)P(gold | Ce) + (1 — 0.3)P(gold | Ds,)] x
[(0.3) P(silver|Ce) + (1 — 0.3)P(silver | Ds,)] %
[(0.3) P(truck|Ce) + (1 — 0.3) P(truck | Ds,)]
=(03-3+0.7-4)(03-%+0.7-0)(03- % +0.7- %)
= 0.0002223

D, gives the highest probability, therefore, it is most likely to be relevant to
the query.

Cross-Language Information Retrieval 163

4.3.2 Bilingual Corpus Strategies

Logically, cross-language information retrieval systems should benefit from
having similar document collections in both language L and L’. It is trivial to
find documents in both L and L/, but for cross-language information retrieval
techniques to work well, it is necessary to find documents that, at the very least,
describe the similar content. A book translated into both language L and L' is
an example of a bilingual corpus of documents. In other cases, we might only
have a book in language L and another book on an entirely different topic in
L’. Numerous cross-language information retrieval techniques were developed
assuming that, at some level, a bilingual corpus exists. Even for obscure lan-
guages there are often parallel translations of some texts (e.g.; religious texts)
which might be sufficient to build a useful bilingual term list. Additionally, the
European Union is legally required to publish decisions regarding patents in
multiple languages.

43.2.1 Parallel

In the world of machine translation, parallel corpora have been used since
the early 1990’s to identify potential translations for a given word. The first
step is to match up sentences in the two corpora. This is known as sentence
alignment. One of the first papers that described sentence alignment for par-
allel corpora to generate translation probabilities is [Brown et al., 1990]. The
general idea is to take a document in language L and another document which
is a translation of L in language L’ and align the two texts. The problem is
non-trivial as one sentence in L can map to many sentences in L’. The align-
ment can be at the sentence, paragraph, or document level. Initial approaches
for aligning corpora used dynamic programming algorithms based on either the
number of words [Brown et al., 1991] in a sentence or the number of characters
in the sentence [Gale and Church, 1991].

A bilingual term lexicon can be used to assist in the alignment process (e.g.;
if we see a sentence with the word peace in English we might align it with
the word shalom in Hebrew), We note that one use of aligned corpora is to
generate a bilingual term lexicon, so in cases of more obscure languages, such
a lexicon might not exist.

The problem can be expressed as a means of estimating the translation prob-
ability P(f|e) where e is a word in English and f is a word in French. Five
models for estimating this probability are given in [Brown et al., 1993]. These
are referred to frequently as IBM Model 1, 2, 3, 4, and 5. In model one, word
order is not included. Model two uses the word order. Model three includes
the length of terms being matched. Models four and five include the proba-
bility of a given connection between the English word and the French word.

164 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Later, an approach using HMM's was given in [Vogel et al., 1996]. Software to
easily implement these algorithms was not widely available until a workshop
was held with the stated purpose of building and disseminating such tools [Al-
Onaizan et al., 1999]. At this workshop a program named GIZA was developed
and it included IBM Models 1, 2, and 3. Later, a new version GIZA++ was im-
plemented which contained all five IBM models, Vogel’s HMM-based model,
as well as a variety of other improvements. Today GIZA++ is widely used by
CLIR applications that wish to generate a bilingual term list from a parallel
corpus of two different languages. Details of GIZA++ as well as comparative
results using the different models are given in [Och and Ney, 2000b, Och and
Ney, 2000a, Och and Ney, 2003].

An algorithm for using this technique to align English and Norwegian sen-
tences is described in [Hofland, 1996]. A survey of alignment techniques is
given in [Somers, 2001, Veronis, 2000]. An approach to building a parallel
corpus by starting with a small collection and gradually adding to it with trans-
lation models is described in [Callison-Burch and Osborne, 2003].

4.3.2.2 Comparable

Comparable corpora are two collections that are about the same basic con-
tent but the documents are not translations of one another. The cross-language
information retrieval techniques we discuss in our comparable corpora section
assume that document A in language L corresponds to document B in language
L.

43.3 Comparable Corpora Strategies

Comparable corpora exist when documents in one language are about the
same topic, but are not translations. Many cross-language information retrieval
techniques focus on this type of a collection since it is more likely to have a
comparable corpus between language pairs than to obtain a parallel corpus.

We note that when the entire document collection exists in language L and
a comparable collection exists in L’ a simple approach for cross-language in-
formation retrieval can be used. The query can be executed in language L and
results are obtained. The resulting documents are mapped to their compara-
ble twins in language L’. A document list in language L’ is then returned to
the user. In most cases, the comparable corpus is simply a subset of training
documents which can be used to facilitate cross-language retrieval of larger
document collections.

4.3.3.1 Extraction of Bilingual Term Lists

Early work with comparable corpora appeared in [Sheridan and Ballerini,
1996]. In this work, documents are aligned by date and by a language inde-

Cross-Language Information Retrieval 165

pendent descriptor (e.g.; “.mil” indicated that the document was about military
issues). In subsequent work, proper nouns in documents were also used to fa-
cilitate alignment [Sheridan et al., 1997]. This was done as it was hoped that
proper nouns would be somewhat language independent. From this alignment,
a bilingual term list was constructed and used as a basis for query translation.
A term-term similarity function is then defined, which yields, for a given term,
other terms that are similar. This function is used for a query in language L to
find terms in language L'.

Ballesteros and Croft also used co-occurrence to reduce ambiguity by using
the assumption that good translations should co-occur in target language docu-
ments while incorrect translations should not co-occur [Ballesteros and Croft,
1997, Ballesteros and Croft, 1998]. An iterative proportional fitting procedure
is used to gradually compute a probability that a given term is a translation of
another term. This probability is used to choose among the candidate transla-
tions.

Another approach uses a vector to represent a target word [Fung, 1998].
This context vector, T is populated by using the words that surround it. The
approach resembles those used to automatically generate a monolingual term
list (see Section 3.6). The context words are then translated to source terms
using a manually constructed bilingual term list. Let us call the new vector
S’. The idea is that at least some of these words will exist in the bilingual

“term list. Once this is done, context vectors for the source terms are computed
based on surrounding terms; we refer to this vector as S. Now, one or more
translations are identified simply by using a cosine similarity measure between
S and T'. This technique was applied in a recent Cross-Language Evaluation
Forum (CLEF) submission [Cancedda et al., 2003].

4.3.3.2 Hidden Markov Models

In Section 4.2.5, we described how Hidden Markov Models can be used
to incorporate a bilingual term dictionary into cross-language retrieval. With
a comparable corpus, this approach can be modified to use a more accurate
translation probability. Instead of a uniform translation probability, the fre-
quency of occurrence in the comparable corpus can be used. Accuracy was
improved in [Federico and Bertoldi, 2002, Bertoldi and Federico, 2003] when
probabilities were used in conjunction with the assignment of uniform proba-
bilities based on the bilingual dictionary. The combination protects the system
from query words that appear only in the dictionary or only in the parallel
corpus.

4.3.3.3 Cross-Language Relevance Models

We described monolingual language models in Section 2.3. Typically, these
models differ in how they estimate the likelihood that a given term will appear

166 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

in a relevant document. To briefly review, this estimate is trivial if there are
relevant documents. However, if there are relevant documents from a prior
query, there is no need to run the query. Given this inherent Carch-22, Section
2.2.1 contained a variety of different estimates for this probability. Estimates
can be made by equating the probability of relevance for a given term with the
probability of co-occurrence with every term in the query. The idea is that if a
term appears in a document that contains every query term, it is highly likely
to be relevant. More formally:

P(wv q1,42,- -+ Qk)
P(q1,q2,--.,qk)

The next step is to compute the probability of an arbitrary term co-occurring
with every term in the query. One estimate is:

P(w|Ry) = P(w|Q) =

k
P(wlqi, g2, qx) = Y P(M) <P(w|M)HP(q,-|M))

Mep i=1

where P(w|M) is the probability of finding term w in a model M. The uni-
verse of models p can be all of the documents in the collection. It follows that
P(M) = ﬁ if P(M) uses a uniform distribution. Different estimates based on
the 1f and essentially the idf can then be used to estimate the P(w|M).

A cross-language version of this model that uses a comparable corpus sim-
ply changes the estimate to compute the probability of the term in language
L’ that co-occurs in a comparable document with all of the terms in the query
language L. Instead of simply computing the probability of co-occurrence, the
comparable corpus is used to map the co-occurring document in language L to
one in language L'.

More formally:

k
P(w,q1,...q) = > P(My,Mp) (P(w|ML')HP(QiIML)>
My M ep i=1

To normalize P(w, qi, . . ., gk) itis divided by the summation of P(w, qi, - .., qk)
for every term. Now we use (and this is the big leap that is made when using
relevance models) P(w|Q) to estimate P(w|Ry).

For document relevance estimation, the KL divergence relative entropy met-
rics are used. These metrics compare the P(w|D) distribution from a docu-

ment to the P(w|R) distribution that was estimated.
Formally:

P(w|R)
P(w|D)

KL(R|D) =Y _ P(w|R)og

Cross-Language Information Retrieval 167
where P(w|D) is estimated by:

tfw,D
Zv tfv,D

where v represents a term in the entire vocabulary of the document collection.
P(w|D) has two components. The first denotes the occurrence of the term w
in document D. The second includes the occurrence of term w in the document
collection. A may be used to tune the weight of each component.

This model is clearly not scalable because it requires computing probabili-
ties for every term in a language at query time. To speed up computation, only
the top documents are retrieved for a query using a more straightforward simi-
larity measure and those documents are then re-ranked with this model. Mean
average precision is reported in [Lavrenko et al., 2002].

p(w|D) = A () + (1= A)P(w)

4.3.3.4 Generalized Vector Space Model

The traditional vector-space model represents documents and queries as
vectors in a multi-dimensional term space. Once this is done, a similarity mea-
sure can be computed by measuring the distance from a query to a document
vector. Another approach is to use a term-document matrix where each row
contains the number of occurrences of the term in each document [Wong et al.,
1985]. Each column represents a traditional document vector. If we compute
Q' = (AT)(Q), we obtain a new vector representation of the query ¢’ that has a
cornponent for each document in the collection. Each component of Q' is sim-
ply an inner product of the query terms with the document that corresponds to
this component. A component that represents a document that contains none
of the query terms will have a value of zero. A component that represents a
document that contains all of the query terms will have a much higher value.
For monolingual retrieval, we can simply compute

SC(Q, D;) = cos (Q', ATD,-)

where D; is a document vector.

For cross-language retrieval, using a comparable corpus it is possible to
construct the AT matrix for language L and another matrix BT for language L’
[Carbonell et al., 1997]. To rank document D; in language L', it is necessary
to treat it as we did the query in language L and compute BTD; . At this
point we have a vector with a component for each document in language L
and a similar vector for each document in language L’. To compute a cross-
language similarity measure, the cosine of the angle between the two vectors
is computed. The cross-language similarity measure is given below:

SC(Q, D;) = cos (ATQ, BTDi)

168 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

4.3.3.5 Latent Semantic Indexing

We discussed monolingual Latent Semantic Indexing in Section 2.6. To
review, LSI starts with a term document matrix A and uses a singular value
decomposition to compute [Dumais, 1994):

A=UoVT
One similarity measure is defined as:
SC(Q, D;) = cos (UTQ, UTD,-)

For cross-language retrieval, the singular value decomposition is applied to the
a new term-document matrix that combines the term-document matrix A in
language L with the term-document matrix B in language L’ [Dumais et al.,
1997].

A
[B } = UhoVsf

Once this is done the similarity measure can be computed as:
SC(Q, Dy) = cos (UF Q,UF D;)

We note that different head to head comparisons of LSI and GVSM for
cross-language retrieval were reported in [Carbonell et al., 1997, Littman and
Jiang, 1998]. Furthermore, VSM, LSI, and GVSM were shown to be variations
of a common algorithm that projects documents and queries into a vector space
using singular vectors. The algorithms then differ on how they weight the
components of the vectors.

A monolingual comparison of VSM, LSI, and GVSM on the small Cranfield
collection and the substantially larger TREC collection is given in [Littman
and Jiang, 1998]. For monolingual retrieval, LSI had the best performance on
the Cranfield collection, but VSM had the highest effectiveness on the TREC
collection.

For cross-language retrieval using TREC French and German documents,
LSI outperformed GVSM. An improvement over LSI is obtained by using a
new algorithm called ADE (Approximate Dimension Equalization) which is
roughly a weighted combination of LSI and GVSM.

GVSM Example:

We now give a brief GVSM example using the same English and Spanish doc-
uments used in our example in Section 4.3.1. First we compute a vector for
the original query. This is computed by multiplying the query vector by the
document matrix.

Cross-Language Information Retrieval 169

r1 1 177 107
011 0
100 0
010 0
100 0
Q=ATQ=1{10 1| x|1|=[13 2] (4.3)
111 0
111 0
101 0
020 1
Lo 1 1] L1

Next, we obtain vectors for the Spanish Collection. The vectors will represent
Q' but will be computed using the Spanish document matrix and the Spanish
document collection vectors. We then compute one vector for each document
in the collection.

01117 [0]
10 0 1
02 0 0
10 1 1
101 1
111 1
@=8D,= |2 10 x|]|=[826] @9
10 0 1
020 0
011 0
10 1 1
020 0
11 1] 1]

170 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

1
J

~
1

01 1 1
100 0
020 2
101 0
101 0
111 1

Q =B"D,, = (1’(1)(1) % (1) =[2 17 4] (4.5)
1 00 0
02 0 2
01 1 1
1 01 0
0 20 2
11 1 | [1
o 1 117 11
100 0
020 0
1 01 1
1 01 1
11 1 1

Q' =BTD,, = (1)(1)(1) X (1) =[6 4 8] (4.6)
100 0
0 2 0 0
01 1 1
1 01 1
020 0
(11 1 | 1]

Finally, we compute the similarity between the English query vector and each
Spanish document vector.

SC(Gold, Silver, Truck, Dy,) = cos(< 1,3,2 >,< 8,2,6 >) = 0.6814
SC(Gold, Silver, Truck, Ds,) = cos(< 1,3,2 >,< 2,17,14 >) = 0.9274
SC(Gold, Silver, Truck, Ds,) = cos(< 1,3,2 >,< 6,4,8 >) = 0.8437

4.4 Cross Language Utilities

As we described monolingual utilities in Chapter 3, we now describe cross-
language utilities. The idea is that a utility should be impervious to a given
strategy.

Cross-Language Information Retrieval 171

4.4.1 Cross Language Relevance Feedback

Given that we are taking a query in language L, translating it to language
L’ and then submitting the query, there are two different opportunities to ap-
ply relevance feedback (see Section 3.1). Expansion is possible both before
the query is translated and after the query is translated. Ballesteros and Croft
were the first to describe this in [Ballesteros and Croft, 1997]; they showed
improvements in English-Spanish accuracy from both pre and post translation
query expansion.

The process was repeated for English-Arabic in [Larkey et al., 2002b]. For
pre-translation, using English queries, the top ten documents for each query
were obtained. Terms from these documents were ranked based on their weight
across the ten documents. The top five terms were added to the query but
were only weighted half as important as the original query terms. For post-
translation Arabic terms, the top ten documents were retrieved, and the top
fifty terms were added to the query.

Another form of query expansion was described in [Adriani, 2000]. Here,
it was assumed that the real problem was with the query translation so only
post-translation query expansion was used. The top 20 passages from the ini-
tial result set were obtained, and a term-term co-occurrence matrix was built
for these results. Next, the sum of the similarity of these terms and each post-
translation query term was computed. The top ten terms from these passages
were then added to the query. A direct application of Rocchio relevance feed-
back [Rocchio, 1971] (see Section 3.1.1) for post-translation processing was
described in [Ruiz, 2003].

Work on query expansion is given in [McNamee and Mayfield, 2002a]. In
this work, the authors cite different studies that showed very different results
(e.g.; expansion works, expansion does not work). The authors implemented
new studies on a sufficiently large dataset. They found that a combination of
pre and post translation query expansion provided a fifteen percent effective-
ness improvement. They further showed that pre and post translation expan-
sion improved effectiveness even when translation resources were degraded. In
these experiments they were testing the impact of limited translation resources.
Their key conclusion is that pre-translation expansion does not result in much
improvement if translation resources have substantial lexical coverage. This
expansion provides significant improvement if lexical coverage is poor.

Relevance feedback in conjunction with logistic regression was recently
used for a multilingual retrieval over Chinese, Japanese, and Korean. It was
shown to result in as much as a 66 percent improvement in effectiveness [Chen
and Gey, 2003]. '

Interestingly, a more recent result has shown that pre-translation query ex-
pansion does improve effectiveness when querying a French document collec-

172 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

tion with an English query, but it actually degrades performance when querying
a Mandarin Chinese collection [Levow et al., 2004].

442 Stemming

We discussed stemming for English in Section 3.8. For cross-language re-
trieval, stemming can have a significant impact in a variety of architectural
components. First, the source query processor must identify terms. Next, the
precise bilingual term list used for translation might dictate the type of stem-
ming needed. A bilingual term list that was built with the Porter stemmer
[Porter, 1980] might not be very effective when used with query terms ob-
tained with the Lovins stemmer [Lovins, 1968].

Stemmers for a variety of languages are available and many of them are
freely available on the Internet. Broadly speaking, European language stem-
mers tend to follow the general patterns of the Porter and Lovins stemmers,
removing common prefixes and suffixes. We note that with some languages
like German, extremely long terms can be difficult to stem as they correspond
to several terms in Engiish. ‘A method of decompounding long German terms
is given in [Kamps et al., 2003].

4.4.2.1 Backoff Translation

When using blingual term lists or lexicons for document or query translation
with stemmers, it can be useful to gradually try to match the query term with
the term the translation lexicon. A term “jumping” might not match anything
in the lexicon, but the root form “jump” might match. When matching an
unstemmed or surface form of the term with a stem, four combinations exist.
In our examples below we use stem(?) to indicate the stem of term ¢.

= Surface form of query or document term may match with surface form of
term in lexicon (e.g.; jumping matches with jumping).

= Stem form of query or document term may match with surface form of term
in lexicon (e.g.; stem(jumping) matches with jump).

= Surface form of query or document term may match with stem form of term
in lexicon (e.g.; jump matches with stem(jumping)).

= Stem form of query or document term may match with stem form of term
in lexicon (e.g.; stem(jumping) with stem(jumped)).

These matches can be done in succession. Using this progression in which
we gradually relax the constraints needed to match a query or document term
with a term in a translation lexicon is referred to as backoff translation. This
technique has been shown to improve effectiveness and was used on the CLEF
data in [Oard et al., 2000].

Cross-Language Information Retrieval 173

The concern is that there are hundreds of languages and some of them are
not popular enough to justify allocating resources to build a language depen-
dent stemmer. Additionally work was done on automatic generation of stem-
mers (often referred to as statistical stemming).

4.4.2.2 Automatically Building a Stemmer

Initial work in Spanish showed that a stemmer could be produced by identi-
fying lexicographically similar words to find common suffixes [Buckley et al.,
1994]. Automatically building a stemmer is related to work done in the Lin-
guistica software package which is a program that automatically learns the
structure of words in any human language solely by examining raw text. The
idea is that the software can take an English text and identify that there is a
category of terms with suffixes ing, ed, s. With only 500,000 terms candidate
suffixes can be reasonably identified. A full description of Linguistica may
be found in [Goldsmith, 2001]. First basic candidate suffixes are found us-
ing weighted mutual information. Regular signatures for each class of words
are identified and then a minimum description length (MDL) is used to cor-
rect errors. The MDL ensures that breakpoints should find a common stem
with a common suffix. The only problem with this for CLIR is that some un-
usual terms may not be found. Hence, additional work was done to augment
the Linguistica set of stems with rule induction. This work grouped stems by
frequency for all terms with more than three characters. All two, three, and
four character stems were sorted by frequency (after removing stems that were
overlapped by a longer stem). Essentially, the most frequent suffixes are used
to stem input terms. More details are found in [Oard et al., 2000].

The core idea is that a stemmer is simply a tool that identifies a good split
point for a term in that the start of the term is the stem, and the rest of the
term is the portion that does not need to be stemmed. Results that combined
statistical stemming and backoff translation were significantly more effective
than an unstemmed collection [Oard et al., 2000]. Interestingly, the stemming
based on rule-induction was found to slightly outperform stemming based on
Linguistica.

Recently, hidden Markov models were designed to build stemmers [Nunzio
et al., 2003]. This approach did not remove prefixes, but started with initial
states that ultimately transition to suffix states of size one, two, three, or four
characters (at present, this approach is focused on European languages). By
simply submitting a list of terms from a new language to the Markov model,
it is possible to identify which terms are stems of one another because of their
frequency. Once, the model is trained, a term can be processed and the model
will output the most likely stem for a given term.

The motivation for this approach is that a training language can have many
more instances of jump than jumping, and the model will learn that there is

174 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

a high probability of generating the term jump when jumping is input. A set
of experiments comparing the Markov model-based automatically generated
stemmer to the Porter stemmer in Dutch, French, German, Italian, and Spanish
found that the automatically derived Markov model stemmer achieved only
slightly lower (less than five percent) effectiveness than the manually derived
Porter stemmer.

4.4.2.3 Arabic Stemmers

Middle Eastern languages have also been studied at length. The first work
on Arabic information retrieval is given in [Al-Kharashi and Evens, 1994].
This work used a hand-crafted stemmer in which a lexicon was used to map
each vocabulary term to its corresponding stem or root. Khoja removed com-
mon prefixes and suffixes and tried to identify the roor of a given term [Khoja
and Garside, 1999]. Enhancements to this stemmer are given in [Larkey and
Connell, 2000]. The problem with this approach is that the root of a term is
often very broad. For example, the Arabic word for office and book both have
the same root. Subsequently, work that simply removed plurals and other less
harmful stems demonstrated substantial improvement. These Arabic stemmers
are referred to as light stemmers. Light stemmers for Arabic are described in
[Larkey et al., 2002b, Darwish and Oard, 2003, Aljlayl et al., 2002, Aljlayl and
Frieder, 2002]. A head-to-head comparison of an early light stemmer named
Al-Stem, the light stemmer described in [Larkey et al., 2002b] and a modified
Al-Stem is given in [Darwish and Oard, 2003]. Additional, slight improve-
ments are given in [Chen and Gey, 2002]. We note that these stemmers would
be useful for monolingual Arabic retrieval, but they are clearly useful for CLIR
as well as they support queries from a query in language L to then be translated
into Arabic, the newly translated query may then be run against the Arabic col-
lection, and Arabic documents will be retrieved.

4.4.2.4 Asian Languages

Chinese and other Asian languages pose the interesting problem that white
space is not used to denote a word boundary. A statistical approach using
staged logistic regression to identify Chinese word boundaries from a trained
set of 300 sentences is given in [Dai et al., 1999]. In this work, the relative
frequency of individual characters and two character pairs called bigrams was
used with the document frequency, the weighted document frequency, the lo-
cal frequency, contextual information (frequency of surrounding characters),
and positional information. A combined approach is given in [Xue and Con-
verse, 2002] - this combines frequency based algorithms and dictionary-based
algorithms which simply look for the longest matching set of characters in a
machine-readable dictionary. Interestingly, it has been shown that the segmen-
tation problem can be ignored for Chinese and Japanese CLIR and reason-

Cross-Language Information Retrieval 175

able results can be obtained simply by using overlapping n-grams (see Section
4.4.3).

443 N-grams

A language-independent approach uses sequences of characters called n-
grams [Damashek, 1995). We described n-grams for use in English in Section
3.4. For European languages, n-grams of size n = 4 or n = 5 showed good ef-
fectiveness. Interestingly, n-grams were compared to stemming. An approach
that used the least common n-gram to represent a term, resulted in a slight im-
provement over a Porter stemmer [Mayfield and McNamee, 2003]. The idea is
that a single carefully chosen n-gram for each word might serve as an adequate
stem substitute.

The problem of segmentation for Asian languages was avoided when n-
grams were used by in [McNamee, 2001]. Interestingly, results were compara-
ble to more sophisticated segmentation algorithms. Additional cross-language
experiments with 6-grams are described in [Qu et al., 2003b].

4.4.4 Transliteration

Recent work focused on using forms of transliteration to assist with the
cross-language name matching problem. Pirkola et al use transformation rules
to identify how a name in language L should be transliterated into a name in
language L’ [Pirkola et al., 2003]. The core motivation is that these techni-
cal terms and names are not found in machine readable bilingual term lists
typically used to translate query or document terms. In this effort, transfor-
mation rules are learned by using paired lists of terms in a source and target
language. First, terms are identified that are within some reasonable threshold
of closeness as defined by their edit distance. The Levenshtein edit distance is
computed as the minimum number of substitutions, insertions, and deletions
needed to modify the source term into the target term [Levenshtein, 1966]. For
example the edit distance between fuzzy and fuzy is one.

Once the candidate sets of terms are found, all transformations that resulted
in the minimum edit distance were considered. An error value was assigned
for each character by character transformation. The assignments included er-
ror values of zero for no change, and one for less substantial changes such
as consonant replaces consonant, vowel replaces vowel, or insert or delete of
one character. A value of two is assigned for more substantial changes (e.g.;
a consonant replaces vowel or vowel replaces consonant). The transformation
with the least error values are then identified. Once this is done, a threshold
is used to ensure that a given transformation occurs frequently. These trans-
formations are then used for source to target translation. The confidence of &
given rule can be varied such that more rules with higher recall can be gener-

176 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

ated or fewer rules with higher precision. Test results showed that for several
languages, there was significant improvement when using these transformation
in conjunction with n-grams [Pirkola et al., 2003].

4.44.1 Phonetic Approach

For English-Japanese retrieval, transliteration using a phonetic approach
was studied in [Qu et al., 2003a]. For English-Japanese the general approach
is to use the phonetic sounds of the term. Transliteration is done:

English word — English phonetic — Japanese phonetic — Japanese word

English phonetic representations are found for a given English term. The first
phonetic representation for a term in the CMU Speech Pronunciation Dic-
tionary is used. The dictionary contains 39 different phonemes. Once the
Japanese phonemes are identified a standard mapping converts from Japanese
phoneme to the target katakana character set.

For Japanese-English the problem is harder because of the lack of word
boundaries in Japanese. First, a word segmentation algorithm which essen-
tially matches the longest match word in a dictionary is used. The EDICT
Japanese-English dictionary is used. Using the same phonetic process as used
for English-Japanese, Japanese-English phonetic transliterations are obtained.
These transliterations can be thought of as simply additions to the EDICT dic-
tionary. Checking the transliteration is required because it is possible to have
dramatic word segmentation failures. An example of the term Venice which
has no entry in EDICT is transliterated into bunny and cheer because of the
subparts of the Japanese word that did match EDICT. Hence, transliterations
are checked to see if they co-occur with a reasonable mutual information in
the target corpus as they occur in the source corpus. Dramatic improvements
in query effectiveness were found for queries that contained terms that did not
occur in EDICT.

44.5 Entity Tagging

Identifying entities in English was described in Section 3.8. An obvious ex-
tension to this is to identify people, places, and locations in documents written
in other languages. If we are able to identify these entities it may well open
the door to improved transliteration and phonetic techniques specific to these
entities for CLIR (see Section 4.4.4 and 4.4.4.1). Also, if we know an item is
a person name, perhaps we could suppress incorrect translations by avoiding a
lookup in a common translation dictionary.

Machine learning techniques were shown to work well for this problem
as a training set of named entities can be identified and learning algorithms
can be used to identify them [Carreras et al., 2002]. Earlier work used a lan-

Cross-Language Information Retrieval 177

guage independent bootstrapping algorithm based on iterative learning and re-
estimation of contextual and morphological patterns [Cucerzan and Yarowsky,
1999]. This algorithm learns from un-annotated text and achieves good perfor-
mance when trained on a very short labelled name list with no other required
language specific information.

For each entity class to be recognized and tagged, it is assumed that the user
can provide a short list (around one hundred) unambiguous examples (seeds).
Additionally, some specifics of the language should be known (e.g.; presence
of capitalization and the use of word separators). This algorithm relies on
both internal and contextual clues as independent evidence. Internal clues re-
fer to the morphological structure of the word. These clues use the presence of
prefixes and suffixes as indicators for certain entities. For example, knowing
that Maria, Marinela, and Maricica are feminine first names in Romanian, the
same classification can be a good guess for Mariana because of the common
prefix: Mari. Suffixes are typically even more informative, for example: -escu
is an almost perfect indicator of a last name in Romanian — the same applies
to -wski in Polish -ovic and -ivic in Serbo-Croatian and -son in English. Such
morphological information is learned during bootstrapping. The algorithm was
used to mark named entities in named entities in English, Greek, Hindi, Ru-
manian and Turkish.

A language dependent Arabic entity tagger that relies on specific patterns to
do morphological analysis is described in [Maloney and Niv, 1998]. An Arabic
entity tagger without language dependent resources is described in [McNamee
and Mayfield, 2002b]. These use algorithms similar to those used in English
entity taggers.

It was shown that bilingual term lists frequently lack coverage of entities.
For some cross-language tasks (typically using English and European lan-
guages), it is possible to recognize an entity and hope that it simply will be
spelled the same in both languages. Recent experiments showed that when
proper names were removed from a bilingual lexicon, performance was re-
duced by over fifty percent.

The Conference on Computational Natural Language Learning (CoNLL-
2003) focused on language independent named entity recognition. Results for
both English and German were obtained and the effectiveness of the top ranked
systems were well above eighty-five percent for both precision and recall. In
German, the accuracy was between eighty and eighty-five percent [Sang and
Meulder, 2003]. The top three results in English and the top two in German
used Maximum Entropy Models [Guiasu and Shenitzer, 1985].

Overall, entity tagging in foreign languages and exploiting these entities for
cross-language retrieval is a topic of future research.

178 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

4.4.6 Fusion

Fusion of different retrieval strategies for monolingual retrieval is discussed
at length in Section 8.3. Simply merging results from different strategies (e.g.,
vector space model, language models, LSI, etc.) has not been shown to im-
prove accuracy, but merging results from different representations (e.g.; ti-
tle only queries, title+description, etc.) was shown to help. Fusing differ-
ent query representations for Arabic cross-language retrieval is described in
(Larkey et al., 2002a). The reality is that a user can issue a query to mul-
tiple document collections, and each collection can be written in a different
language. This can be viewed as multilingual information retrieval (MLIR).
For multilingual retrieval, two architectures exists: centralized and distributed.
A distributed architecture indexes documents in each language separately. A
centralized collection combines all of the documents in a single index.

To rank documents for an MLIR, three approaches were tested recently:

= Translate the query into each language and build a separate index with each
language. Normalize all relevance scores and present a single ranked list of
documents. This is a distributed approach.

= Translate the query into each language and build a separate index with each
language, but instead of merging by score, merge by the relative position in
the result list. This is a distributed approach.

= Translate the query into each language and concatenate all terms into one
big query. Index all of the documents in each language into one large in-
dex. Run the single query against the single index. This is a centralized
approach.

The centralized approach performed better than the previous two. It can be
that the presence of proper nouns and the ability to track their distribution over
the entire document collection is the reason for this success [Martinez et al.,
2003]. Fusion can also be done by weighting a document collection based on
its predicted retrieval effectiveness. With this approach, a source collection
might receive a low weight if a poor-quality translation dictionary exists.

Additionally, the number of ambiguous words in a query for a given collec-
tion can be used to weight a collection. It was shown that this approach results
in a slight improvement in accuracy [Lin and Chen, 2003].

4.5 Summary

In some cases, cross-language retrieval systems actually exceed monolin-
gual retrieval. Hence, some have deemed cross-language retrieval a solved
problem. However, much work remains to be done in terms of user interaction
of these systems and more study as to why they are not in widespread use.

Cross-Language Information Retrieval 179

Directions for the future of cross-language retrieval are described in [Oard,
2003].

Numerous commercial search engines focus on monolingual search. How-
ever, CLIR systems have not been widely adopted. A key question is: How
many users truly wish to query documents using a language they know and re-
turn results in a language that they do not know? More studies need to be done
on how many projects exist with this requirement and such work should gather
precise reasons as to why these systems have not deployed existing CLIR al-
gorithms.

4.6 Exercises

1 Consider a system in which documents are obtained in multiple languages.
Describe what factors would you use to determine if the documents should
be translated prior to indexing or if you should simply translate incoming
queries.

2 Give a detailed example of how a CLIR result might exceed 100 percent of
its monolingual counterpart.

3 Consider two documents collections in languages A and B. Documents in
language A all have a corresponding document in Language B. Describe
CLIR algorithms that could be used to take advantage of this comparable
corpus.

Chapter 5

EFFICIENCY

Thus far, we have discussed algorithms used to improve the effectiveness
of query processing in terms of precision and recall. Retrieval strategies and
utilities all focus on finding the relevant documents for a query. They are not
concerned with how long it takes to find them.

However, users of production systems clearly are concerned with run-time
performance. A system that takes too long to find relevant documents is not as
useful as one that finds relevant documents quickly. The bulk of information
retrieval research has focused on improvements to precision and recall since
the hope has been that machines would continue to speed up. Also, there is
valid concern that there is little merit in speeding up a heuristic if it is not
retrieving relevant documents.

Sequential information retrieval algorithms are difficult to analyze in detail
as their performance is often based on the selectivity of an information retrieval
query. Most algorithms are on the order of O(q(t fmaz)) Where g is the number
of terms in the query and t fmqq is the maximum selectivity of any of the query
terms. This is, in fact, a high estimate for query response time as many terms
appear infrequently (about half are hapax legomena, or those that occur once
according to Zipf’s law [Zipf, 1949]). '

We are not aware of a standard analytical model that effectively can be used
to estimate query performance. Given this, sequential information retrieval
algorithms are all measured empirically with experiments that require large
volumes of data and are somewhat time consuming.

The good news is that given larger and larger document collections, more
work is appearing on improvements to run-time performance. We describe that
work in this chapter. Additional research was done to speed up information
retrieval algorithms by employing multiple processors. That work is covered
in Chapter 7. However, in any study of parallel algorithms, it is important

182 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

that work be compared with the best sequential algorithm. Hence, this chapter
describes the best sequential algorithms that we are aware of for information
retrieval.

We also note that most algorithms described in this chapter are directed at
the vector space model. These algorithms are also directly applicable to the
probabilistic model. Clearly, similar work is needed to improve performance
for other retrieval strategies and utilities.

Early information retrieval systems simply scanned very small document
collections. Subsequently, inverted indexes were used to speed query process-
ing at the expense of storage and time to build the index. Signature files were
also proposed. These are typically smaller and faster, but support less retrieval
functionality than an inverted index.

Compression of inverted indexes is often used to speed up query processing.
Additionally, partial document rankings that are much faster than full rankings
can be done at relatively low cost. In some cases precision and recall are
comparable to doing a full ranking [Lee and Ren, 1996].

In Section 5.1, we first survey inverted indexing and then describe methods
used to compress an inverted index. In Section 5.2, we describe algorithms
that improve run-time of query processing, and in Section 5.3, we review sig-
nature files.

S.1 Inverted Index

Since many document collections are reasonably static, it is feasible to build
an inverted index to quickly find terms in the document collection. Inverted in-
dexes were used in both early information retrieval and database management
systems in the 1960°s [Bleir, 1967]. Instead of scanning the entire collection,
the text is preprocessed and all unique terms are identified. This list of unique
terms is referred to as the index. For each term, a list of documents that con-
tain the term is also stored. This list is referred to as a posting list. Figure 5.1
illustrates an inverted index.

An entry in the list of documents can also contain the location of the term in
the document (e.g., word, sentence, paragraph) to facilitate proximity search-
ing. Additionally, an entry can contain a manually or automatically assigned
weight for the term in the document. This weight is frequently used in com-
putations that generate a measure of relevance to the query. Once this measure
is computed, the document retrieval algorithm identifies all the documents that
are “relevant” to the query by sorting the coefficient and presenting a ranked
list to the user.

Indexing requires additional overhead since the entire collection is scanned
and substantial I/O is required to generate an efficiently represented inverted
index for use in secondary storage. Indexing was shown to dramatically reduce
the amount of 1/O required to satisfy an ad hoc query [Stone, 1987]. Upon

Efficiency 183

index | PBsTtiﬁg_LTst_s _______________ !

Best when this fits in
memory

Due to size, stored
on disk

Figure 5.1. Inverted Index

receiving a query, the index is consulted, the corresponding posting lists are
retrieved, and the algorithm ranks the documents based on the contents of the
posting lists.

The size of the index is another concern. Many indexes can be equal to the
size of the original text. This means that storage requirements are doubled due
to the index. However, compression of the index typically results in a space
requirement of less than ten percent of the original text [Witten et al., 1999].
The terms or phrases stored in the index depend on the parsing algorithms that
are employed (see Section 3.8).

The size of posting lists in the inverted index can be approximated by the
Zipfian distribution—Zipf proposed that the term frequency distribution in a
natural language is such that if all terms were ordered and assigned a rank, the
product of their frequency and their rank would be constant [Zipf, 1949]. Table
5.1 illustrates the Zipfian distribution when this constant is equal to one.

Using % where r is the rank and C is the value of the constant, an estimate
can be made for the number of occurrences of a given term. The constant,
C, is domain-specific and equals the number of occurrences of the most fre-
quent term.

184 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Table 5.1. Top Five Terms in Zipfian Distribution

Rank | Frequency | Constant
1 1.00 1

2 0.50 1

3 0.33 1

4 0.25 l

5 0.20 1

5.1.1 Building an Inverted Index

An inverted index consists of two components, a list of each distinct term
referred to as the index and a set of lists referred to as posting lists. To compute
relevance ranking, the term frequency or weight must be maintained. Thus, a
posting list contains a set of tuples for each distinct term in the collection. The
set of tuples is of the form <doc_id, tf> for each distinct term in the collection.
A typical uncompressed index spends four bytes on the document identifier
and two bytes on the term frequency since a long document can have a term
that appears more than 255 times.

Consider a document collection in which document one contains two oc-
currences of sales and one occurrence of vehicle. Document two contains one
occurrence of vehicle. The index would contain the entries vehicle and sales.
The posting list is simply a linked list that is associated with each of these
terms. For this example, we would have:

sales — (1, 2)
vehicle — (1, 1) (2, 1)

The entries in the posting lists are stored in ascending order by document
number. Clearly, the construction of this inverted index is expensive, but once
built, queries can be efficiently implemented. The algorithms underlying the
implementation of the query processing and the construction of the inverted
index are now described.

A possible approach to index creation is as follows: An inverted index is
constructed by stepping through the entire document collection, one term at a
time. The output of the index construction algorithm is a set of files written to
disk. These files are: :

s Index file. Contains the actual posting list for each distinct term in the
collection. A term, ¢ that occurs in ¢ different documents will have a posting
list of the form:

Efficiency 185

t— (dl,tflj), (dg, tfzj), ey (di, tfij)

where d; indicates the document identifier of document i and ¢ f;; indicates
the number of times term j occurs in document i.

s Document file. Contains information about each distinct document—document
identifier, long document name, date published, etc.

= Weight file. Contains the weight for each document. This is the denomi-
nator for the cosine coefficient—defined as the cosine of the angle between
the query and document vector (see Section 2.1).

The construction of the inverted index is implemented by scanning the en-
tire collection, one term at a time. When a term is encountered, a check is
made to see if this term is a stop word (if stop word removal is used) or if it
is a previously identified term. A hash function is used to quickly locate the
term in an array. Collisions caused by the hash function are resolved via a
linear linked list. Different hashing functions and their relative performance
are given in [McKenzie et al., 1990]. Once the posting list corresponding to
this term is identified, the first entry of the list is checked to see if its docu-
ment identifier matches the current document. If it does, the term frequency is
merely incremented. Otherwise, this is the first occurrence of this term in the
document, so a new posting list entry is added to the start of the list.

The posting list is stored entirely in memory. Memory is allocated dynam-
ically for each new posting list entry. With each memory allocation, a check
is made to determine if the memory reserved for indexing has been exceeded.
If it has, processing halts while all posting lists resident in memory are written
to disk. Once processing continues, new posting lists are written. With each
output to disk, posting list entries for the same term are chained together.

Processing is completed when all of the terms are processed. At this point,
the inverse document frequency for each term is computed by scanning the
entire list of unique terms. Once the inverse document frequency is computed,
it is possible to compute the document weight (the denominator for the cosine
coefficient). This is done by scanning the entire posting list for each term.

5.1.2 Compressing an Inverted Index

A key objective in the development of inverted index files is to develop
algorithms that reduce 1/O bandwidth and storage overhead. The size of the
index file determines the storage overhead imposed. Furthermore, since large
index files demand greater /O bandwidth to read them, the size also directly
affects the processing times.

Although compression of text was extensively studied [Bell et al., 1990,
Gutmann and Bell, 1994, Gupte and Frieder, 1995, Trotman, 2003], relatively

186 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

little work was done in the area of inverted index compression. However, in
work by Moffat and Zobel, an index was generated that was relatively easy
to decompress. It comprised less than ten percent of the original document
collection, and, more i mpressively, included stop terms.

Two primary areas in which an inverted index might be compressed are the
term dictionary and the posting lists. Given relatively inexpensive memory
costs, we do not focus on compression of indexes, although some work is de-
scribed in [Witten et al., 1999]. The King James Bible (about five megabytes)
contains 9,020 distinct terms and the traditional TREC collection (slightly over
two gigabytes) contains 538,244 distinct terms [Witten et al., 1999]. The num-
ber of new terms always slightly increases as new domains are encountered,
but it is reasonable to expect that it will stabilize at around one or two million
terms. With an average term length of six, a four byte document frequency
counter, and a four byte pointer to the first entry in the posting list, fourteen
bytes are required for each term. For the conservative estimate of two million
terms, the uncompressed index is likely to fit comfortably within 32 MB. Even
if we are off by an order of magnitude, the amount of memory needed to store
the index is conservatively under a gigabyte.

Given the relatively small size of an index and the ease with which it should
fit in memory, we do not describe a detailed discussion of techniques used to
compress the index. We note that stemming reduces this requirement and Huff-
man encoding can be used in a relatively straightforward fashion [Witten et al.,
1999]. Also, the use of phrases improves precision and recall (see Section
3.8.2). Storage of phrases in the index may well require compression. This de-
pends upon how phrases are identified and restricted. Most systems eliminate
phrases that occur infrequently.

To introduce index compression algorithms, we first describe a relatively
straightforward one that is referred to as the Byte Aligned (BA) index com-
pression [Grossman, 1995]. BA compression is done within byte boundaries
to improve runtime at a slight cost to the compression ratio. This algorithm is
easy to implement and provides good compression (about fifteen percent of the
size of an uncompressed inverted index when stop words are used). Variable
length encoding is described in [Witten et al., 1999]. Although such efforts
yield better compression, they do so at the expense of increased implementa-
tion complexity.

5.1.2.1 Fixed Length Index Compression

As discussed in the previous section, the entries in a posting list are in as-
cending order by document identifier. An exception to this document order-
ing occurs when a pruned inverted index approach is used (see Section 5.1.5).
Hence, run-length encoding is applicable for document identifiers. For any
document identifier, only the offset between the current identifier and the iden-

